User menu

Tight MIP formulations for bounded up/down times and interval-dependent start-ups

Bibliographic reference Queyranne, Maurice ; Wolsey, Laurence. Tight MIP formulations for bounded up/down times and interval-dependent start-ups. In: Mathematical Programming, Vol. 164, p. 129-155 (2017)
Permanent URL http://hdl.handle.net/2078.1/186600
  1. Conforti Michele, Cornuéjols Gérard, Zambelli Giacomo, Integer Programming, ISBN:9783319110073, 10.1007/978-3-319-11008-0
  2. Damcı-Kurt Pelin, Küçükyavuz Simge, Rajan Deepak, Atamtürk Alper, A polyhedral study of production ramping, 10.1007/s10107-015-0919-9
  3. Frangioni Antonio, Gentile Claudio, Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints, 10.1287/opre.1060.0309
  4. Frangioni A., Gentile C., Lacalandra F., Tighter Approximated MILP Formulations for Unit Commitment Problems, 10.1109/tpwrs.2008.2004744
  5. Garver, L.L.: Power generation scheduling by integer programming–development of theory, power apparatus and systems. III Trans. Am. Inst. Electr. Eng. 81(3), 730–734 (1963)
  6. Hedman, K.W., O’Neill, R.P., Oren, S.S.: Analyzing valid inequalities of the generation unit commitment problem. In: Power Systems Conference and Exposition, 2009 PSCE ’09. IEEE/PES, pp. 1–6 (2009)
  7. Knueven, B., Ostrowski, J., Wang, J.: Generating cuts from the ramping polytope for the unit commitment problem Department of Industrial and Systems Engineering University of Tennessee(2016)
  8. Lee Jon, Leung Janny, Margot François, Min-up/min-down polytopes, 10.1016/j.disopt.2003.12.001
  9. Malkin, P.: Minimum runtime and stoptime polyhedra. In: Working Paper, Core, Université catholique de Louvain (2003)
  10. Martens Maren, McCormick S. Thomas, Queyranne Maurice, Separation, dimension, and facet algorithms for node flow polyhedra, 10.1007/s10107-010-0378-2
  11. Morales-España Germán, Gentile Claudio, Ramos Andres, Tight MIP formulations of the power-based unit commitment problem, 10.1007/s00291-015-0400-4
  12. Morales-Espana, Latorre Jesus M., Ramos Andres, Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem, 10.1109/tpwrs.2013.2251373
  13. Nemhauser George, Wolsey Laurence, Integer and Combinatorial Optimization : Nemhauser/Integer and Combinatorial Optimization, ISBN:9781118627372, 10.1002/9781118627372
  14. Ostrowski James, Anjos Miguel F., Vannelli Anthony, Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem, 10.1109/tpwrs.2011.2162008
  15. Pan, K., Guan, Y.: A Polyhedral Study of the Integrated Minimum-Up/Down Time and Ramping Polytope. http://www.optimization-online.org/DB_HTML/2015/08/5070.html (2015)
  16. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)
  17. Queyranne, M., Wolsey, L.A.: Modeling poset convex subsets. In: Cologne-Twente Workshop, Istanbul (2015)
  18. Rajan, D., and Takriti, S.: Minimum up/down polytopes of the unit commitment problem with start-up costs. IBM Res. Rep. RC23628 (W0506-050), Thomas J. Watson Research Center, Yorktown Heights, NY (2005)
  19. Viana Ana, Pedroso João Pedro, A new MILP-based approach for unit commitment in power production planning, 10.1016/j.ijepes.2012.08.046
  20. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)
  21. Wu Lei, A Tighter Piecewise Linear Approximation of Quadratic Cost Curves for Unit Commitment Problems, 10.1109/tpwrs.2011.2148370