User menu

Land use change affects biogenic silica pool distribution in a subtropical soil toposequence

Bibliographic reference Unzué-Belmonte, Dacil ; Ameijeiras Mariño, Yolanda ; Opfergelt, Sophie ; Cornélis, Jean-Thomas ; Barao, Lucia ; et. al. Land use change affects biogenic silica pool distribution in a subtropical soil toposequence. In: Soil Earth, , no.8, p. 737-750 (2017)
Permanent URL
  1. Alexandre, A., Meunier, J.-D., Colin, F., and Koud, J.-M.: Plant impact on the biogeochemical cycle of silicon and related weathering processes, Geochim. Cosmochim. Ac., 61, 677–682,, 1997.
  2. Ameijeiras-Mariño, Y.: Changes in soil chemical weathering intensity after forest conversion to cropland: importance of slope geomorphology, in: The response of soil chemical weathering to physical erosion: integrating the impact of forest conversion, edited by: Université catholique de Louvain (UCL), PhD thesis, Belgium, 2017.
  3. Barão L., Clymans W., Vandevenne F., Meire P., Conley D. J., Struyf E., Pedogenic and biogenic alkaline-extracted silicon distributions along a temperate land-use gradient : Pedogenic and biogenic alkaline-extracted Si, 10.1111/ejss.12161
  4. Barão Lúcia, Vandevenne Floor, Clymans Wim, Frings Patrick, Ragueneau Olivier, Meire Patrick, Conley Daniel J., Struyf Eric, Alkaline-extractable silicon from land to ocean: A challenge for biogenic silicon determination : Alkaline-extractable Si-land to ocean, 10.1002/lom3.10028
  5. BARTOLI F., Crystallochemistry and surface properties of biogenic opal, 10.1111/j.1365-2389.1985.tb00340.x
  6. Blecker, S. W., Mcculley, R. L., Chadwick, O. A., and Kelly, E. F.: Biologic cycling of silica across a grassland bioclimosequence, Global Biogeochem. Cy., 20, 1–11,, 2006.
  7. Campforts, B., Van de Broek, M., Trigalet, S., Schoonejans, J., Robinet, J., Unzué-Belmonte, D., Ameijeiras-Mariño, Y., Vermeire, M. L., and Minella, J.: Soil texture data Brazilian SOGLO field sites, available at: (last access: 27 June 2017), 2016.
  8. Chadwick O. A., Hendricks D. M., Nettleton W. D., Silica in Duric Soils: II. Mineralogy1, 10.2136/sssaj1987.03615995005100040029x
  9. Chao T.T., Sanzolone R.F., Decomposition techniques, 10.1016/0375-6742(92)90048-d
  10. Clymans W., Struyf E., Govers G., Vandevenne F., Conley D. J., Anthropogenic impact on amorphous silica pools in temperate soils, 10.5194/bg-8-2281-2011
  11. Clymans, W., Struyf, E., Van den Putte, A., Langhans, C., Wang, Z., and Govers, G.: Amorphous silica mobilization by inter-rill erosion: Insights from rainfall experiments, Earth Surf. Proc. Land., 40, 1171–1181,, 2015.
  12. Conley, D. J., Likens, G. E., Buso, D. C., Saccone, L., Bailey, S. W., and Johnson, C. E.: Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest, Glob. Chang. Biol., 14, 2548–2554,, 2008.
  13. Cornelis Jean-Thomas, Delvaux Bruno, Soil processes drive the biological silicon feedback loop, 10.1111/1365-2435.12704
  14. Cornelis J.-T., Delvaux B., Georg R. B., Lucas Y., Ranger J., Opfergelt S., Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review, 10.5194/bg-8-89-2011
  15. Currie H. A., Perry C. C., Silica in Plants: Biological, Biochemical and Chemical Studies, 10.1093/aob/mcm247
  16. Delvaux Bruno, Herbillon Adrien J., Vielvoye Léon, Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications, 10.1016/0016-7061(89)90017-7
  17. DeMaster, D. J.: The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Ac., 45, 1715–1732,, 1981.
  18. Derry Louis A., Kurtz Andrew C., Ziegler Karen, Chadwick Oliver A., Biological control of terrestrial silica cycling and export fluxes to watersheds, 10.1038/nature03299
  19. Doetterl S., Cornelis J.-T., Six J., Bodé S., Opfergelt S., Boeckx P., Van Oost K., Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape, 10.5194/bg-12-1357-2015
  20. Drees, L. R., Wilding, L. P., Smeck, N. E., and Senkayi, A. L.: Silica in soils: quartz and disorders polymorphs, in Minerals in soil environments, 914–974, Soil Science Society of America, Madison, 1989.
  21. Drever, J. I.: The effect of land plants on weathering rates of silicate minerals, Geochim. Cosmochim. Ac., 58, 2325–2332,, 1994.
  22. Fraysse, F., Pokrovsky, O. S., Schott, J., and Meunier, J.: Surface properties, solubility and dissolution kinetics of bamboo phytoliths, 70, 1939–1951,, 2006.
  23. Fraysse Fabrice, Pokrovsky Oleg S., Schott Jacques, Meunier Jean-Dominique, Surface chemistry and reactivity of plant phytoliths in aqueous solutions, 10.1016/j.chemgeo.2008.10.003
  24. Govers, G., Quine, T. A., Desmet, P. J. J., and Walling, D. E.: The relative contribution of soil tillage and overland flow erosion to soil redistribution on agricultural land, Earth Surf. Proc. Land., 21, 929–946,<929::AID-ESP631>3.0.CO;2-C, 1996.
  25. Guntzer Flore, Keller Catherine, Poulton Paul R., McGrath Steve P., Meunier Jean-Dominique, Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted, 10.1007/s11104-011-0987-4
  26. Hall D.O., Biomass Energy, Renewable Energy (1993) ISBN:9781483256955 p.33-59, 10.1016/b978-1-4832-5695-5.50007-x
  27. Herbillon, A. J.: Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils, in: Proceedings of the 8th International Soil Classification Work-shop: Classification, Characterization and Utilization of Oxisols, Part 1, edited by: EMBRAPA, 39–48, Rio de Janeiro, 1986.
  28. Ibrahim Mostafa.A., Lal R., Soil carbon and silicon pools across an un-drained toposequence in central Ohio, 10.1016/j.catena.2014.04.006
  29. IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 2015.
  30. JONES L. H. P., HANDRECK K. A., Effects of Iron and Aluminium Oxides on Silica in Solution in Soils, 10.1038/198852a0
  31. Keller Catherine, Guntzer Flore, Barboni Doris, Labreuche Jérôme, Meunier Jean-Dominique, Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies, 10.1016/j.crte.2012.10.004
  32. Kelly Eugene F., Chadwick Oliver A., Hilinski Thomas E., 10.1023/a:1005919306687
  33. Kendrick Katherine J., Graham Robert C., Pedogenic Silica Accumulation in Chronosequence Soils, Southern California, 10.2136/sssaj2004.1295
  34. Kirchholtes Renske P.J., van Mourik J.M., Johnson B.R., Phytoliths as indicators of plant community change: A case study of the reconstruction of the historical extent of the oak savanna in the Willamette Valley Oregon, USA, 10.1016/j.catena.2014.11.004
  35. Koning Erica, Epping Eric, Van Raaphorst Wim, 10.1023/a:1020318610178
  36. Kottek Markus, Grieser Jürgen, Beck Christoph, Rudolf Bruno, Rubel Franz, World Map of the Köppen-Geiger climate classification updated, 10.1127/0941-2948/2006/0130
  37. Li Zimin, Song Zhaoliang, Parr Jeffrey F., Wang Hailong, Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration, 10.1007/s11104-013-1661-9
  38. Lindsay, W. L.: Chemical equilibria in soils, Wiley, New York, available at: equilibira.pdf (last access: 27 June 2017), 1979.
  39. Dominique Meunier Jean, Colin Fabrice, Alarcon Charles, Biogenic silica storage in soils, 10.1130/0091-7613(1999)027<0835:bssis>;2
  40. Meunier J.D., Kirman S., Strasberg D., Nicolini E., Delcher E., Keller C., The output and bio-cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island), 10.1016/j.geoderma.2010.09.010
  41. Minella Jean P.G., Walling Desmond E., Merten Gustavo H., Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies, 10.1016/j.jhydrol.2014.10.013
  42. Montgomery David R, Brandon Mark T, Topographic controls on erosion rates in tectonically active mountain ranges, 10.1016/s0012-821x(02)00725-2
  43. Opfergelt, S., de Bournonville, G., Cardinal, D., André, L., Delstanche, S., and Delvaux, B.: Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon, Geochim. Cosmochim. Ac., 73, 7226–7240,, 2009.
  44. Opfergelt, S., Cardinal, D., André, L., Delvigne, C., Bremond, L., and Delvaux, B.: Variations of δ30Si and Ge ∕ Si with weathering and biogenic input in tropical basaltic ash soils under monoculture, Geochim. Cosmochim. Ac., 74, 225–240,, 2010.
  45. Parr, J., Sullivan, L., Chen, B., Ye, G., and Zheng, W.: Carbon bio-sequestration within the phytoliths of economic bamboo species, Glob. Chang. Biol., 16, 2661–2667,, 2010.
  46. Piperno, D. R.: Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists, Altamira Press, San Diego, 2006.
  47. Robert, M. and Tessier, D.: Méthode de préparation des argiles des sols pour des études minéralogiques, Ann. Agron., 25, 859–882, 1974.
  48. Ronchi Benedicta, Barão Lúcia, Clymans Wim, Vandevenne Floor, Batelaan Okke, Govers Gerard, Struyf Eric, Dassargues Alain, Factors controlling Si export from soils: A soil column approach, 10.1016/j.catena.2015.05.007
  49. Rovner Irwin, Potential of Opal Phytoliths for use in Paleoecological Reconstruction, 10.1016/0033-5894(71)90070-6
  50. Saccone L., Conley D. J., Koning E., Sauer D., Sommer M., Kaczorek D., Blecker S. W., Kelly E. F., Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems, 10.1111/j.1365-2389.2007.00949.x
  51. Santos, G. M. and Alexandre, A.: Earth-Science Reviews The phytolith carbon sequestration concept: Fact or fiction? A comment on “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems by Song et al.”, Earth Sci. Rev., 164, 251–255,, 2017.
  52. Sauer Daniela, Saccone Loredana, Conley Daniel J., Herrmann Ludger, Sommer Michael, Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments, 10.1007/s10533-005-5879-3
  53. Smis Adriaan, Van Damme Stefan, Struyf Eric, Clymans Wim, Van Wesemael Bas, Frot Elisabeth, Vandevenne Floor, Van Hoestenberghe Thomas, Govers Gerard, Meire Patrick, A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments, 10.1007/s10533-010-9527-1
  54. Sommer Michael, Kaczorek Danuta, Kuzyakov Yakov, Breuer Jörn, Silicon pools and fluxes in soils and landscapes—a review, 10.1002/jpln.200521981
  55. Sommer M., Jochheim H., Höhn A., Breuer J., Zagorski Z., Busse J., Barkusky D., Meier K., Puppe D., Wanner M., Kaczorek D., Si cycling in a forest biogeosystem – the importance of transient state biogenic Si pools, 10.5194/bg-10-4991-2013
  56. Song Zhaoliang, Wang Hailong, Strong P. James, Li Zimin, Jiang Peikun, Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration, 10.1016/j.earscirev.2012.09.006
  57. Song Zhaoliang, Müller Karin, Wang Hailong, Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems, 10.1016/j.earscirev.2014.09.009
  58. Song Zhaoliang, McGrouther Kim, Wang Hailong, Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems, 10.1016/j.earscirev.2016.04.007
  59. Struyf Eric, Conley Daniel J., Emerging understanding of the ecosystem silica filter, 10.1007/s10533-011-9590-2
  60. Struyf Eric, Temmerman Stijn, Meire Patrick, Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary), 10.1007/s10533-006-9051-5
  61. Struyf Eric, Smis Adriaan, Van Damme Stefan, Garnier Josette, Govers Gerard, Van Wesemael Bas, Conley Daniel J., Batelaan Okke, Frot Elisabeth, Clymans Wim, Vandevenne Floor, Lancelot Christiane, Goos Peter, Meire Patrick, Historical land use change has lowered terrestrial silica mobilization, 10.1038/ncomms1128
  62. Uehara, G. and Gillman, G.: The Mineralogy, Chemistry, and Physics of Tropical Soils With Variable Charge Clays, West View Press, Boulder, CO, USA, 1981.
  63. Unzué-Belmonte Dácil, Struyf Eric, Clymans Wim, Tischer Alexander, Potthast Karin, Bremer Martina, Meire Patrick, Schaller Jörg, Fire enhances solubility of biogenic silica, 10.1016/j.scitotenv.2015.12.085
  64. Unzué-Belmonte, D., Ameijeiras-Mariño, Y., Trigalet, S., Schoonejans, J., Campforts, B., Van de Broek, M., Robinet, J., and Minella, J.: Alkaline Extractable Silica – SOGLO Project, available at:, last access: 27 June 2017.
  65. Vanacker Veerle, Bellin Nicolas, Molina Armando, Kubik Peter W., Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model, 10.1007/s10980-013-9956-z
  66. Van Cappellen, P.: Biomineralization and global biogeochemical cycles, Rev. Mineral. Geochemistry, 54, 357–381,, 2003.
  67. Vandevenne Floor, Struyf Eric, Clymans Wim, Meire Patrick, Agricultural silica harvest: have humans created a new loop in the global silica cycle?, 10.1890/110046
  68. Vandevenne, F. I., Barão, L., Ronchi, B., Govers, G., Meire, P., Kelly, E. F., and Struyf, E.: Silicon pools in human impacted soils of temperate zones, Global Biogeochem. Cy., 29, 1439–1450,, 2015a.
  69. Vandevenne Floor I., Delvaux Claire, Hughes Harold J., André Luc, Ronchi Benedicta, Clymans Wim, Barão Lúcia, Cornelis Jean-Thomas, Govers Gerard, Meire Patrick, Struyf Eric, Landscape cultivation alters δ30Si signature in terrestrial ecosystems, 10.1038/srep07732
  70. Von Braun, J.: The world food situation: new driving forces and required actions, Food Policy Reports 18, International Food Policy Research Institute, Washington DC, 2007.
  71. Watteau F., Villemin G., Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest, 10.1046/j.1365-2389.2001.00391.x
  72. Wei, X., Shao, M., Gale, W., and Li, L.: Global pattern of soil carbon losses due to the conversion of forests to agricultural land, Sci. Rep., 1, 6–11,, 2014.