User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Unlocking Tn3-family transposase activity in vitro unveils an asymetric pathway for transposome assembly.

  1. Curcio M. Joan, Derbyshire Keith M., The outs and ins of transposition: from mu to kangaroo, 10.1038/nrm1241
  2. Chen Liang, Mathema Barun, Chavda Kalyan D., DeLeo Frank R., Bonomo Robert A., Kreiswirth Barry N., Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding, 10.1016/j.tim.2014.09.003
  3. He Susu, Hickman Alison Burgess, Varani Alessandro M., Siguier Patricia, Chandler Michael, Dekker John P., Dyda Fred, Insertion Sequence IS26Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition, 10.1128/mbio.00762-15
  4. Mizuuchi Kiyoshi, Transpositional Recombination: Mechanistic Insights from Studies of Mu and Other Elements, 10.1146/annurev.bi.61.070192.005051
  5. Chaconas George, Harshey Rasika M., Transposition of Phage Mu DNA, Mobile DNA II ISBN:9781555812096 p.384-402, 10.1128/9781555817954.ch17
  6. Harshey Rasika M., Transposable Phage Mu, 10.1128/microbiolspec.mdna3-0007-2014
  7. Montaño Sherwin P, Rice Phoebe A, Moving DNA around: DNA transposition and retroviral integration, 10.1016/j.sbi.2011.03.004
  8. Nowotny Marcin, Retroviral integrase superfamily: the structural perspective, 10.1038/embor.2008.256
  9. Yang Wei, Lee Jae Young, Nowotny Marcin, Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity, 10.1016/j.molcel.2006.03.013
  10. Nicolas E., Lambin M., Hallet B., Target Immunity of the Tn3-Family Transposon Tn4430 Requires Specific Interactions between the Transposase and the Terminal Inverted Repeats of the Transposon, 10.1128/jb.00477-10
  11. Craig Nancy L., TARGET SITE SELECTION IN TRANSPOSITION, 10.1146/annurev.biochem.66.1.437
  12. Hickman Alison B., Dyda Fred, DNA Transposition at Work, 10.1021/acs.chemrev.6b00003
  13. Adzuma Kenji, Mizuuchi Kiyoshi, Target immunity of Mu transposition reflects a differential distribution of Mu B protein, 10.1016/0092-8674(88)90387-x
  14. Stellwagen A. E., Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition, 10.1093/emboj/16.22.6823
  15. Stellwagen Anne E., Craig Nancy L., Mobile DNA elements: controlling transposition with ATP-dependent molecular switches, 10.1016/s0968-0004(98)01325-5
  16. Ge Jun, Lou Zheng, Cui Hong, Shang Lei, Harshey Rasika M, Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements, 10.1007/s12038-011-9108-z
  17. Mizuno N., Dramicanin M., Mizuuchi M., Adam J., Wang Y., Han Y.-W., Yang W., Steven A. C., Mizuuchi K., Ramon-Maiques S., MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition, 10.1073/pnas.1309499110
  18. Lambin Michaël, Nicolas Emilien, Oger Cédric A., Nguyen Nathan, Prozzi Deborah, Hallet Bernard, Separate structural and functional domains of Tn4430 transposase contribute to target immunity : Immunity blind mutants of Tn4430 transposon, 10.1111/j.1365-2958.2012.07967.x
  19. Dawson Angela, Finnegan David J, Excision of the Drosophila Mariner Transposon Mos1, 10.1016/s1097-2765(02)00798-0
  20. Feng Xiaofeng, Colloms Sean D., In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family, 10.1111/j.1365-2958.2007.05842.x
  21. Tellier Michael, Bouuaert Corentin Claeys, Chalmers Ronald, Mariner and the ITm Superfamily of Transposons, 10.1128/microbiolspec.mdna3-0033-2014
  22. Sarnovsky, EMBO J, 15, 6348 (1996)
  23. Aziz Ramy K., Breitbart Mya, Edwards Robert A., Transposases are the most abundant, most ubiquitous genes in nature, 10.1093/nar/gkq140
  24. Peters Joseph E., Tn7, 10.1128/microbiolspec.mdna3-0010-2014
  25. Kennedy Angela K, Haniford David B, Mizuuchi Kiyoshi, Single Active Site Catalysis of the Successive Phosphoryl Transfer Steps by DNA Transposases, 10.1016/s0092-8674(00)80839-9
  26. Zhou Liqin, Mitra Rupak, Atkinson Peter W., Burgess Hickman Alison, Dyda Fred, Craig Nancy L., Transposition of hAT elements links transposable elements and V(D)J recombination, 10.1038/nature03157
  27. Maekawa Takafumi, Yanagihara Katsuhiko, Ohtsubo Eiichi, A cell-free system of Tn3 transposition and transposition immunity, 10.1046/j.1365-2443.1996.d01-216.x
  28. Davies D. R., Three-Dimensional Structure of the Tn5 Synaptic Complex Transposition Intermediate, 10.1126/science.289.5476.77
  29. Richardson Julia M., Colloms Sean D., Finnegan David J., Walkinshaw Malcolm D., Molecular Architecture of the Mos1 Paired-End Complex: The Structural Basis of DNA Transposition in a Eukaryote, 10.1016/j.cell.2009.07.012
  30. Maertens Goedele N., Hare Stephen, Cherepanov Peter, The mechanism of retroviral integration from X-ray structures of its key intermediates, 10.1038/nature09517
  31. Montaño Sherwin P., Pigli Ying Z., Rice Phoebe A., The Mu transpososome structure sheds light on DDE recombinase evolution, 10.1038/nature11602
  32. Yanagihara Katsuhiko, Mizuuchi Kiyoshi, Progressive Structural Transitions within Mu Transpositional Complexes, 10.1016/s1097-2765(02)00796-7
  33. Arias-Palomo Ernesto, Berger James M., An Atypical AAA+ ATPase Assembly Controls Efficient Transposition through DNA Remodeling and Transposase Recruitment, 10.1016/j.cell.2015.07.037
  34. Craig NL (2015) Mobile DNA III (ASM, Washington, DC).
  35. Greene Eric C., Mizuuchi Kiyoshi, Visualizing the Assembly and Disassembly Mechanisms of the MuB Transposition Targeting Complex, 10.1074/jbc.m311883200
  36. Skelding Z., Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition, 10.1093/emboj/cdg551
  37. Greene Eric C, Mizuuchi Kiyoshi, Target Immunity during Mu DNA Transposition, 10.1016/s1097-2765(02)00733-5
  38. Han Yong-Woon, Mizuuchi Kiyoshi, Phage Mu Transposition Immunity: Protein Pattern Formation along DNA by a Diffusion-Ratchet Mechanism, 10.1016/j.molcel.2010.06.013
  39. Skelding Z., Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation, 10.1093/emboj/cdf347
  40. BAINTON R, Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system, 10.1016/0092-8674(93)90581-a
  41. Parks Adam R., Li Zaoping, Shi Qiaojuan, Owens Roisin M., Jin Moonsoo M., Peters Joseph E., Transposition into Replicating DNA Occurs through Interaction with the Processivity Factor, 10.1016/j.cell.2009.06.011
  42. Nagai Takeharu, Ibata Keiji, Park Eun Sun, Kubota Mie, Mikoshiba Katsuhiko, Miyawaki Atsushi, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, 10.1038/nbt0102-87
  43. Kuwabara Michio, Sigman David S., Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes, 10.1021/bi00397a006
  44. Maxam Allan M., Gilbert Walter, [57] Sequencing end-labeled DNA with base-specific chemical cleavages, Nucleic Acids Part I (1980) ISBN:9780121819651 p.499-560, 10.1016/s0076-6879(80)65059-9
  45. Mahillon, EMBO J, 7, 1515 (1988)
  46. Nicolas Emilien, Oger Cédric A., Galloy Christine, Lambin Michael, Hallet Bernard, Nguyen Nathan, Dandoy Damien, The Tn3-family of Replicative Transposons, 10.1128/microbiolspec.mdna3-0060-2014
  47. Mindlin S Petrova M (2013) Mercury resistance transposons. Bacterial Integrative Genetic Elements, eds Roberts AP Mullany P (Landes Bioscience, Austin, TX), pp 33–52.
  48. Partridge Sally R., Analysis of antibiotic resistance regions in Gram-negative bacteria, 10.1111/j.1574-6976.2011.00277.x
  49. Cuzon G., Naas T., Nordmann P., Functional Characterization of Tn4401, a Tn3-Based Transposon Involved in blaKPC Gene Mobilization, 10.1128/aac.05202-11
Bibliographic reference Nicolas, Emilien ; Oger, Cédric ; Nguyen, Nathan ; Lambin, Michaël ; Draime, Amandine ; et. al. Unlocking Tn3-family transposase activity in vitro unveils an asymetric pathway for transposome assembly.. In: Proceedings of the National academy of sciences of the United States of America, Vol. 114, no.5, p. E669-E678 (2017)
Permanent URL http://hdl.handle.net/2078.1/186088