User menu

Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model

Bibliographic reference Wilken, Florian ; Fiener, Peter ; Van Oost, Kristof. Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model. In: Earth Surface Dynamics, Vol. 5, no. 1, p. 113-124 (2017)
Permanent URL http://hdl.handle.net/2078.1/185649
  1. Baeyens, L.: Verklarende tekst bij het kaartblad Tervuren 102E. Bodemkaart van Belgie, Geologisch-Instituut, Gent, Belgium, 1959.
  2. Beuselinck, L., Govers, G., Steegen, A., and Quine, T. A.: Sediment transport by overland flow over an area of net deposition, Hydrol. Process., 13, 2769–2782, https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17< 2769::AID-HYP898> 3.0.CO;2-X, 1999.
  3. Beuselinck, L., Hairsine, P. B., Sander, G. C., and Govers, G.: Evaluating a multiclass net deposition equation in overland flow conditions, Water Resour. Res., 38, 14.1–14.11, https://doi.org/10.1029/2001WR000250, 2002a.
  4. Beuselinck L., Govers G., Hairsine P.B., Sander G.C., Breynaert M., The influence of rainfall on sediment transport by overland flow over areas of net deposition, 10.1016/s0022-1694(01)00548-0
  5. Beuselinck L, Steegen A, Govers G, Nachtergaele J, Takken I, Poesen J, Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt, 10.1016/s0169-555x(99)00068-9
  6. Billings S. A., Buddemeier R. W., Richter D. deB., Van Oost K., and Bohling G.: A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochem. Cy., 24, 1–14, https://doi.org/10.1029/2009GB003560, 2010.
  7. De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J.: LISEM: a single-event physically based hydrological and soil erosion model for drainage basins, I: theory, input and output, Hydrol. Process., 10, 1107–1117, https://doi.org/10.1002/(SICI)1099-1085(199608)10:8< 1107::AID-HYP415> 3.0.CO, 1996.
  8. Desmet P.J.J., Govers G., Two-dimensional modelling of the within-field variation in rill and gully geometry and location related to topography, 10.1016/s0341-8162(96)00074-4
  9. Dietrich William E., Settling velocity of natural particles, 10.1029/wr018i006p01615
  10. Dlugoß, V., Fiener, P., Van Oost, K., and Schneider, K.: Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment, Earth Surf. Proc. Land., 37, 193–208, https://doi.org/10.1002/esp.2246, 2012.
  11. Doetterl Sebastian, Six Johan, Van Wesemael Bas, Van Oost Kristof, Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization, 10.1111/j.1365-2486.2012.02680.x
  12. Erol A., Koşkan Ö., Başaran M. A., Socioeconomic modifications of the universal soil loss equation, 10.5194/se-6-1025-2015
  13. Fiener P., Auerswald K., Rotation Effects of Potato, Maize, and Winter Wheat on Soil Erosion by Water, 10.2136/sssaj2006.0355
  14. Fiener, P., Govers, G., and Van Oost, K.: Evaluation of a dynamic multi-class sediment transport model in a catchment under soil-conservation agriculture, Earth Surf. Proc. Land., 33, 1639–1660, https://doi.org/10.1002/esp.1634, 2008.
  15. P. Fiener, V. Dlugoß, K. Van Oost, Erosion-induced carbon redistribution, burial and mineralisation — Is the episodic nature of erosion processes important?, 10.1016/j.catena.2015.05.027
  16. Galdino Sergio, Sano Edson E., Andrade Ricardo G., Grego Celia R., Nogueira Sandra F., Bragantini Claudio, Flosi Ana H. G., Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures : Modeling Soil Erosion of Degraded Pastures from Brazil, 10.1002/ldr.2414
  17. Gillijns Katleen, Poesen Jean, Deckers Jozef, On the characteristics and origin of closed depressions in loess-derived soils in Europe—a case study from central Belgium, 10.1016/j.catena.2004.10.001
  18. Govers G., Selectivity and transport capacity of thin flows in relation to rill erosion, 10.1016/s0341-8162(85)80003-5
  19. Govers, G.: Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials, Earth Surf. Proc. Land., 17, 515–528, https://doi.org/10.1002/esp.3290170510, 1992.
  20. Hairsine P. B., Rose C. W., Modeling water erosion due to overland flow using physical principles: 1. Sheet flow, 10.1029/91wr02380
  21. Hairsine P. B., Rose C. W., Modeling water erosion due to overland flow using physical principles: 2. Rill flow, 10.1029/91wr02381
  22. Hairsine, P. B., Beuselinck, L., and Sander, G. C.: Sediment transport through an area of net deposition, Water Resour. Res., 38, 22.1–22.7, https://doi.org/10.1029/2001WR000265, 2002.
  23. Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cy., 13, 885–901, https://doi.org/10.1029/1999GB900061, 1999.
  24. Haynes R.J., Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview, Advances in Agronomy (2005) ISBN:9780120007837 p.221-268, 10.1016/s0065-2113(04)85005-3
  25. John Bettina, Yamashita Tamon, Ludwig Bernard, Flessa Heiner, Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, 10.1016/j.geoderma.2004.12.013
  26. Kuhn, N. J., Hoffmann, T., Schwanghart, W., and Dotterweich, M.: Agricultural soil erosion and global carbon cycle: controversy over?, Earth Surf. Proc. Land., 34, 1033–1038, https://doi.org/10.1002/esp.1796, 2009.
  27. Kuhn Nikolaus J., Armstrong Elizabeth K., Ling Amy C., Connolly Kathryn L., Heckrath Goswin, Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils, 10.1016/j.catena.2010.10.002
  28. Lal R, Soil erosion and the global carbon budget, 10.1016/s0160-4120(02)00192-7
  29. Ligonja P. J., Shrestha R. P., Soil Erosion Assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach : SOIL EROSION ASSESSMENT IN KONDOA ERODED AREA IN TANZANIA, 10.1002/ldr.2215
  30. Liu, S., Bliss, N., Sundquist, E., and Huntington, T. G.: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cy., 17, 43.1–43.24, https://doi.org/10.1029/2002GB002010, 2003.
  31. López-Vicente M., Poesen J., Navas A., Gaspar L., Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees, 10.1016/j.catena.2011.01.001
  32. Lopez-Vicente, M., Quijano, L., Palazon, L., Gaspar, L., and Navas, A.: Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees), Cuadernos De Investigacion Geografica, 41, 127–147, https://doi.org/10.18172/cig.2649, 2015.
  33. Manies K. L., Harden J. W., Kramer L., Parton W. J., Carbon dynamics within agricultural and native sites in the loess region of western Iowa, 10.1046/j.1354-1013.2001.00427.x
  34. Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C.: A process-based soil erosion model for USDA-Water Erosion Prediction Project technology, T. ASAE, 32, 1587–1593, https://doi.org/10.13031/2013.31195, 1989.
  35. Parsons Anthony J., Abrahams Athol D., Luk Shiu-Hung, Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona, 10.1016/0022-1694(90)90096-g
  36. Parton W. J., Stewart J. W. B., Cole C. V., Dynamics of C, N, P and S in grassland soils: a model, 10.1007/bf02180320
  37. Poesen, J.: An improved splash transport model, Z. Geomorphol., 29, 193–211, 1985.
  38. Poesen, J. and Savat, J.: Particle-size separation during erosion by splash and runoff, in: Assessment of Erosion, edited by: De Boodt, M. and Gabriels, D., Wiley, 1980.
  39. Polyakov V. O., Lal R., SOIL EROSION AND CARBON DYNAMICS UNDER SIMULATED RAINFALL : , 10.1097/01.ss.0000138414.84427.40
  40. Quinton John N., Catt John A., Hess Tim M., The Selective Removal of Phosphorus from Soil, 10.2134/jeq2001.302538x
  41. Quinton John N., Govers Gerard, Van Oost Kristof, Bardgett Richard D., The impact of agricultural soil erosion on biogeochemical cycling, 10.1038/ngeo838
  42. Renwick W. H., Comment on "Managing Soil Carbon" (II), 10.1126/science.1100447
  43. Römkens, M. J. M., Young, R. A., Poesen, J. W. A., McCool, D. K., El-Swaify, S. A., and Bradford, J. M.: Soil erodibility factor (K), in: Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), edited by: Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C., US Government Printing Office, Washington DC, USA, 65–99, 1997.
  44. Rosenbloom, N. A., Doney, S. C., and Schimel, D. S.: Geomorphic evolution of soil texture and organic matter in eroding landscapes, Global Biogeochem. Cy., 15, 365–381, https://doi.org/10.1029/1999GB001251, 2001.
  45. Schiettecatte W., Gabriels D., Cornelis W. M., Hofman G., Enrichment of Organic Carbon in Sediment Transport by Interrill and Rill Erosion Processes, 10.2136/sssaj2007.0201
  46. Schiettecatte W., Gabriels D., Cornelis W.M., Hofman G., Impact of deposition on the enrichment of organic carbon in eroded sediment, 10.1016/j.catena.2007.07.001
  47. Schmidt, J.: A mathematical model to simulate rainfall erosion. in: Catena Supplement 19: Erosion, transport and deposition processes – Theories and models, edited by: Bork, H.-R., De Ploey, J., and Schick, A. P., Catena, Cremlingen, Germany, 19, 101–109, 1991.
  48. Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cy., 12, 231–257, https://doi.org/10.1029/98GB00741, 1998.
  49. Steegen An, Govers Gerard, Nachtergaele Jeroen, Takken Ingrid, Beuselinck Laurent, Poesen Jean, Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium, 10.1016/s0169-555x(99)00108-7
  50. Steegen A., Govers G., Takken I., Nachtergaele J., Poesen J., Merckx R., Factors Controlling Sediment and Phosphorus Export from Two Belgian Agricultural Catchments, 10.2134/jeq2001.3041249x
  51. Van Oost Kristof, Govers Gerard, Desmet Phillipe, 10.1023/a:1008198215674
  52. Van Oost, K., Beuselinck, L., Hairsine, P. B., and Govers, G.: Spatial evaluation of a multi-class sediment transport and deposition model, Earth Surf. Proc. Land., 29, 1027–1044, https://doi.org/10.1002/esp.1089, 2004.
  53. Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S., and Merckx, R.: Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion, Global Biogeochem. Cy., 19, 1–13, https://doi.org/10.1029/2005GB002471, 2005a.
  54. Van Oost K., Govers G., Cerdan O., Thauré D., Van Rompaey A., Steegen A., Nachtergaele J., Takken I., Poesen J., Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets, 10.1016/j.catena.2005.03.001
  55. Van Oost K., Quine T. A., Govers G., De Gryze S., Six J., Harden J. W., Ritchie J. C., McCarty G. W., Heckrath G., Kosmas C., Giraldez J. V., da Silva J. R. M., Merckx R., The Impact of Agricultural Soil Erosion on the Global Carbon Cycle, 10.1126/science.1145724
  56. Verstraeten Gert, Poesen Jean, Demarée Gaston, Salles Christian, Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates, 10.1029/2006jd007169
  57. von Lützow Margit, Kögel-Knabner Ingrid, Ekschmitt Klemens, Flessa Heinz, Guggenberger Georg, Matzner Egbert, Marschner Bernd, SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, 10.1016/j.soilbio.2007.03.007
  58. Wang Zhengang, Govers Gerard, Steegen An, Clymans Wim, Van den Putte An, Langhans Christoph, Merckx Roel, Van Oost Kristof, Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area, 10.1016/j.geomorph.2010.08.010
  59. Wang, Z., Govers, G., Van Oost, K., Clymans, W., Van den Putte, A., and Merckx, R.: Soil organic carbon mobilization by interrill erosion: Insights from size fractions, J. Geophys. Res.-Earth, 118, 348–360, https://doi.org/10.1029/2012JF002430, 2013.
  60. Wilken, F., Sommer, M., Van Oost, K., Bens, O., and Fiener, P.: Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes, SOIL Discuss., https://doi.org/10.5194/soil-2016-71, in review, 2016.
  61. Williams, J. R.: The EPIC model, in: Computer models of watershed hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, USA, 909–1000, 1995.
  62. Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses – A guide to conservation planning, US Government Printing Office, Washington DC, USA, 1978.
  63. Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model, Global Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002271, 2005.
  64. Yu B., Rose C. W., Ciesiolka C. A. A., Coughlan K. J., Fentie B., Toward a framework for runoff and soil loss prediction using GUEST technology, 10.1071/s97002