User menu

Credit risk valuation with rating transitions and partial information

Bibliographic reference Hainaut, Donatien ; ROBERT, CHRISTIAN YANN. Credit risk valuation with rating transitions and partial information. In: International Journal of Theoretical and Applied Finance, Vol. 17, no.07, p. 1450046 (2014)
Permanent URL http://hdl.handle.net/2078/185383
  1. Assaf David, Langberg Naftali A., Savits Thomas H., Shaked Moshe, Multivariate Phase-Type Distributions, 10.1287/opre.32.3.688
  2. Arvanitis Angelo, Gregory Jonathan, Laurent Jean-Paul, Building Models for Credit Spreads, 10.3905/jod.1999.319117
  3. Bielecki T., Credit Risk: Modeling, Valuation, and Hedging (2002)
  4. Choi Jaewon, Credit Risk Model with Lagged Information, 10.3905/jod.2008.16.2.085
  5. Coculescu Delia, Geman Hélyette, Jeanblanc Monique, Valuation of default-sensitive claims under imperfect information, 10.1007/s00780-007-0060-6
  6. DUFFIE DARRELL, ECKNER ANDREAS, HOREL GUILLAUME, SAITA LEANDRO, Frailty Correlated Default, 10.1111/j.1540-6261.2009.01495.x
  7. Duffie Darrell, Lando David, Term Structures of Credit Spreads with Incomplete Accounting Information, 10.1111/1468-0262.00208
  8. Duffie D., Credit Risk (2003)
  9. Fackrell Mark, Modelling healthcare systems with phase-type distributions, 10.1007/s10729-008-9070-y
  10. Frey Rüdiger, Runggaldier Wolfgang, Pricing credit derivatives under incomplete information: a nonlinear-filtering approach, 10.1007/s00780-010-0129-5
  11. Frey Rüdiger, Schmidt Thorsten, PRICING CORPORATE SECURITIES UNDER NOISY ASSET INFORMATION, 10.1111/j.1467-9965.2009.00374.x
  12. Frey Rüdiger, Schmidt Thorsten, Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering, 10.1007/s00780-011-0153-0
  13. Giesecke Kay, Goldberg Lisa R., Ding Xiaowei, A Top-Down Approach to Multiname Credit, 10.1287/opre.1100.0855
  14. Guo Xin, Jarrow Robert A., Zeng Yan, Credit Risk Models with Incomplete Information, 10.1287/moor.1080.0361
  15. Herbertsson Alexander, Pricing synthetic CDO tranches in a model with default contagion the matrix analytic approach, 10.21314/jcr.2008.078
  16. Herbertsson A., The Credit Derivatives Handbook (2008)
  17. Herbertsson Alexander, Modelling default contagion using multivariate phase-type distributions, 10.1007/s11147-010-9052-3
  18. Herbertsson Alexander, Rootzén Holger, Pricing kth-to-default swaps under default contagion: the matrix analytic approach, 10.21314/jcf.2008.183
  19. Hillairet C., Stochastics, 84, 183 (2012)
  20. Jarrow Robert A., Lando David, Turnbull Stuart M., A Markov Model for the Term Structure of Credit Risk Spreads, 10.1093/rfs/10.2.481
  21. Jarrow R., Journal of Investment Management, 2, 1 (2004)
  22. Cotton Tony, ‘FLIPPING THE COIN’: MODELS FOR SOCIAL JUSTICE AND THE MATHEMATICS CLASSROOM, 10.1080/14794809909461547
  23. Lando D., Credit Risk Modeling: Theory and Applications (2004)
  24. Nakagawa H., Journal of Mathematical Science, 8, 107 (2001)
  25. Pérez-Ocón Rafael, Phase-Type (PH) Distributions, 10.1002/9780470400531.eorms0659
  26. Rolski T., Stochastic Processes for Insurance and Finance (2009)
  27. Schönbucher P., Credit Derivatives Pricing Models (2003)
  28. TANG DAN, WANG YONGJIN, ZHOU YUZHEN, COUNTERPARTY RISK FOR CREDIT DEFAULT SWAP WITH STATES RELATED DEFAULT INTENSITY PROCESSES, 10.1142/s0219024911006863