User menu

Structural Measurements and Adjustments for Growth

Bibliographic reference Sluysmans, Thierry ; Colan, Steven D.. Structural Measurements and Adjustments for Growth. In: Wyman W. Lai, Luc L. Mertens, Meryl S. Cohen, Tal Geva, Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult, John Wiley & Sons, Ltd  : (United Kingdom) Chichester 2016, p. 61-72
Permanent URL
  1. Lipshultz S. E., Establishing norms for echocardiographic measurements of cardiovascular structures and function in children, 10.1152/japplphysiol.00167.2005
  2. Lopez Leo, Colan Steven D., Frommelt Peter C., Ensing Gregory J., Kendall Kathleen, Younoszai Adel K., Lai Wyman W., Geva Tal, Recommendations for Quantification Methods During the Performance of a Pediatric Echocardiogram: A Report From the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council, 10.1016/j.echo.2010.03.019
  3. Sluysmans T., Theoretical and empirical derivation of cardiovascular allometric relationships in children, 10.1152/japplphysiol.01144.2004
  4. Colan Steven D., Parness Ira A., Spevak Philip J., Sanders Stephen P., Developmental modulation of myocardial mechanics: Age- and growth-related alterations in afterload and contractility, 10.1016/s0735-1097(10)80282-7
  5. Tanner, J Appl Physiol, 2, 1 (1949)
  6. GRAHAM T. P., JARMAKANI J. M., CANENT R. V., MORROW M. N., Left Heart Volume Estimation in Infancy and Childhood: Reevaluation of Methodology and Normal Values, 10.1161/01.cir.43.6.895
  7. Gutgesell Howard P., Rembold Christopher M., Growth of the human heart relative to body surface area, 10.1016/0002-9149(90)91048-b
  8. Henry W. L., Ware J., Gardin J. M., Hepner S. I., McKay J., Weiner M., Echocardiographic measurements in normal subjects. Growth-related changes that occur between infancy and early adulthood, 10.1161/01.cir.57.2.278
  9. Grollman, Am J Physiol, 90, 210 (1929)
  10. Lange Peter E., Onnasch Dietrich G. W., Schaupp Gerd H., Zill Claudia, Heintzen Paul H., Size and function of the human left and right ventricles during growth : Normative angiographic data, 10.1007/bf02240454
  11. Abbott Robert D., Gutgesell Howard P., [3] Effects of heteroscedasticity and skewness on prediction in regression: Modeling growth of the human heart, Part B: Numerical Computer Methods (1994) ISBN:9780121821418 p.37-51, 10.1016/s0076-6879(94)40042-3
  12. Habbal Magdi El, Somerville Jane, Size of the normal aortic root in normal subjects and in those with left ventricular outflow obstruction, 10.1016/0002-9149(89)90339-1
  13. King Douglas H., Smith E.O'Brian, Huhta James C., Gutgesell Howard P., Mitral and tricuspid valve anular diameter in normal children determined by two-dimensional echocardiography, 10.1016/0002-9149(85)90157-2
  14. Gutgesell Howard P., French Margaret, Echocardiographic determination of aortic and pulmonary valve areas in subjects with normal hearts, 10.1016/0002-9149(91)90652-2
  15. Lester Lucille A., Sodt Peter C., Hutcheon Nancy, Arcilla Rene A., M-mode echocardiography in normal children and adolescents: Some new perspectives, 10.1007/bf02308381
  16. Kirklin, Cardiac Surgery, 21 (1993)
  17. Cantinotti Massimiliano, Scalese Marco, Molinaro Sabrina, Murzi Bruno, Passino Claudio, Limitations of Current Echocardiographic Nomograms for Left Ventricular, Valvular, and Arterial Dimensions in Children: A Critical Review, 10.1016/j.echo.2011.10.016
  18. Haycock George B., Schwartz George J., Wisotsky David H., Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults, 10.1016/s0022-3476(78)80601-5
  19. Leonardi Benedetta, Margossian Renee, Colan Steven D., Powell Andrew J., Relationship of Magnetic Resonance Imaging Estimation of Myocardial Iron to Left Ventricular Systolic and Diastolic Function in Thalassemia, 10.1016/j.jcmg.2008.04.005
  20. Winter Edward M., Brooks George A., From Euclid to Molecular Biology and Gene Expression : Where Now for Allometric Modeling?, 10.1249/01.jes.0000240030.68490.c9
  21. Batterham, George, Whyte, Sharma, McKenna, Scaling Cardiac Structural Data by Body Dimensions: A Review of Theory, Practice, and Problems, 10.1055/s-1999-8844
  22. de Simone Giovanni, Daniels Stephen R., Devereux Richard B., Meyer Richard A., Roman Mary J., de Divitiis Oreste, Alderman Michael H., Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight, 10.1016/0735-1097(92)90385-z
  23. Daniels Stephen R., Kimball Thomas R., Morrison John A., Khoury Philip, Meyer Richard A., Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease, 10.1016/s0002-9149(99)80200-8
  24. Frayn K N, Karpe F, Fielding B A, Macdonald I A, Coppack S W, Integrative physiology of human adipose tissue, 10.1038/sj.ijo.0802326
  25. Collis T., Devereux R. B., Roman M. J., de Simone G., Yeh J.-L., Howard B. V., Fabsitz R. R., Welty T. K., Relations of Stroke Volume and Cardiac Output to Body Composition : The Strong Heart Study, 10.1161/01.cir.103.6.820
  26. Nonlinear Regression Analysis and Its Applications, ISBN:9780470316757, 10.1002/9780470316757
  27. Zar, Biostatistical Analysis, 261 (1974)
  28. Montgomery, Introduction to Linear Regression Analysis (1992)
  29. Theil, Principles of Econometrics, 244 (1971)
  30. Altman Douglas G., Construction of age-related reference centiles using absolute residuals, 10.1002/sim.4780121003
  31. Ward Richard, Schlenker Janet, Anderson Gregory S., Simple method for developing percentile growth curves for height and weight, 10.1002/ajpa.1120
  32. Flegal, Am J Clin Nutr, 70, 163S (1999)
  33. Cole T. J., Freeman J. V., Preece M. A., British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood, 10.1002/(sici)1097-0258(19980228)17:4<407::aid-sim742>;2-l
  34. Cole T. J., Green P. J., Smoothing reference centile curves: The lms method and penalized likelihood, 10.1002/sim.4780111005
  35. Foster B. J., Mackie A. S., Mitsnefes M., Ali H., Mamber S., Colan S. D., A Novel Method of Expressing Left Ventricular Mass Relative to Body Size in Children, 10.1161/circulationaha.107.741157
  36. Murray, J Gen Physiol, 11, 431 (1927)
  37. Horsfield, J Appl Physiol, 68, 457 (1990)
  38. Weibel Ewald R., Morphometry of the Human Lung, ISBN:9783642875557, 10.1007/978-3-642-87553-3
  39. Thompson, On Growth and Form, 935 (1943)
  41. Murray C. D., The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume, 10.1073/pnas.12.3.207
  42. Pollanen M.S., Dimensional optimization at different levels of the arterial hierarchy, 10.1016/s0022-5193(05)80706-4
  43. Kamiya Akira, Togawa Tatsuo, Optimal branching structure of the vascular tree, 10.1007/bf02476705
  44. Kamiya Akira, Togawa Tatsuo, Yamamoto Atsuko, Theoretical relationship between the optimal models of the vascular tree, 10.1007/bf02461331
  45. Zamir M., The role of shear forces in arterial branching, 10.1085/jgp.67.2.213
  46. Uylings H. B. M., Optimization of diameters and bifurcation angles in lung and vascular tree structures, 10.1007/bf02461198
  47. Sherman T. F., On connecting large vessels to small. The meaning of Murray's law, 10.1085/jgp.78.4.431
  48. Seiler C., Kirkeeide R. L., Gould K. L., Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease, 10.1161/01.cir.85.6.1987
  49. Rossitti S., Lofgren J., Vascular dimensions of the cerebral arteries follow the principle of minimum work, 10.1161/01.str.24.3.371
  50. Caro, The Mechanics of the Circulation, 44 (1978)
  51. Yoganathan Ajit P., Cape Edward G., Sung Hsing-Wen, Williams Frank P., Jimoh Abdul, Review of hydrodynamic principles for the cardiologist: Applications to the study of blood flow and jets by imaging techniques, 10.1016/0735-1097(88)92620-4