User menu

Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

Bibliographic reference Duhr, Claude ; Marzucca, Robin ; Verbeek, Bram ; et. al. Multi-Regge kinematics and the moduli space of Riemann spheres with marked points. In: Journal of High Energy Physics, Vol. 1608, p. 152 (2016)
Permanent URL http://hdl.handle.net/2078.1/184856
  1. Drummond James M, Henn Johannes, Smirnov Vladimir A, Sokatchev Emery, Magic identities for conformal four-point integrals, 10.1088/1126-6708/2007/01/064
  2. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [ hep-th/0610248 ] [ INSPIRE ].
  3. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [ arXiv:0705.1864 ] [ INSPIRE ].
  4. Alday Luis F, Maldacena Juan, Gluon scattering amplitudes at strong coupling, 10.1088/1126-6708/2007/06/064
  5. Drummond J.M., Korchemsky G.P., Sokatchev E., Conformal properties of four-gluon planar amplitudes and Wilson loops, 10.1016/j.nuclphysb.2007.11.041
  6. Brandhuber Andreas, Heslop Paul, Travaglini Gabriele, MHV amplitudes in super-Yang–Mills and Wilson Loops, 10.1016/j.nuclphysb.2007.11.002
  7. Drummond James, Henn Johannes, Plefka Jan, Yangian symmetry of scattering amplitudes in 𝒩 = 4 super Yang-Mills theory, 10.1088/1126-6708/2009/05/046
  8. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., On planar gluon amplitudes/Wilson loops duality, 10.1016/j.nuclphysb.2007.11.007
  9. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, 10.1016/j.nuclphysb.2009.10.013
  10. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [ hep-th/0505205 ] [ INSPIRE ].
  11. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [ hep-th/0610251 ] [ INSPIRE ].
  12. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [ arXiv:0803.1465 ] [ INSPIRE ].
  13. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Hexagon Wilson loop = six-gluon MHV amplitude, 10.1016/j.nuclphysb.2009.02.015
  14. Alday Luis F, Maldacena Juan, Comments on gluon scattering amplitudes via AdS/CFT, 10.1088/1126-6708/2007/11/068
  15. Berkovits Nathan, Maldacena Juan, Dual superconformal symmetry, and the amplitude/Wilson loop connection, 10.1088/1126-6708/2008/09/062
  16. Caron-Huot S., Notes on the scattering amplitude — Wilson loop duality, 10.1007/jhep07(2011)058
  17. Mason Lionel, Skinner David, The complete planar S-matrix of $ \mathcal{N} = 4 $ SYM as a Wilson loop in twistor space, 10.1007/jhep12(2010)018
  18. Alday Luis F., Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, An operator product expansion for polygonal null Wilson loops, 10.1007/jhep04(2011)088
  19. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Bootstrapping null polygon Wilson loops, 10.1007/jhep03(2011)092
  20. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Pulling the straps of polygons, 10.1007/jhep12(2011)011
  21. Sever Amit, Vieira Pedro, Wang Tianheng, OPE for super loops, 10.1007/jhep11(2011)051
  22. Basso B., Exciting the GKP string at any coupling, 10.1016/j.nuclphysb.2011.12.010
  23. Basso Benjamin, Sever Amit, Vieira Pedro, Spacetime and Flux TubeS-Matrices at Finite Coupling forN=4Supersymmetric Yang-Mills Theory, 10.1103/physrevlett.111.091602
  24. Basso Benjamin, Sever Amit, Vieira Pedro, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, 10.1007/jhep01(2014)008
  25. Basso Benjamin, Sever Amit, Vieira Pedro, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, 10.1007/jhep08(2014)085
  26. Basso Benjamin, Sever Amit, Vieira Pedro, Collinear Limit of Scattering Amplitudes at Strong Coupling, 10.1103/physrevlett.113.261604
  27. Basso Benjamin, Sever Amit, Vieira Pedro, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, 10.1007/jhep09(2014)149
  28. Basso Benjamin, Caetano João, Córdova Lucía, Sever Amit, Vieira Pedro, OPE for all helicity amplitudes, 10.1007/jhep08(2015)018
  29. Basso Benjamin, Caetano João, Córdova Lucía, Sever Amit, Vieira Pedro, OPE for all helicity amplitudes II. Form factors and data analysis, 10.1007/jhep12(2015)088
  30. B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, arXiv:1508.03045 [ INSPIRE ].
  31. Hodges Andrew, Eliminating spurious poles from gauge-theoretic amplitudes, 10.1007/jhep05(2013)135
  32. Golden J. K., Goncharov A. B., Spradlin M., Vergu C., Volovich A., Motivic amplitudes and cluster coordinates, 10.1007/jhep01(2014)091
  33. Chen Kuo-Tsai, Iterated path integrals, 10.1090/s0002-9904-1977-14320-6
  34. J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys. A 47 (2014) 474005 [ arXiv:1401.6446 ] [ INSPIRE ].
  35. Fomin Sergey, Zelevinsky Andrei, 10.1090/s0894-0347-01-00385-x
  36. Fomin Sergey, Zelevinsky Andrei, Cluster algebras II: Finite type classification, 10.1007/s00222-003-0302-y
  37. SCOTT JOSHUA S., GRASSMANNIANS AND CLUSTER ALGEBRAS, 10.1112/s0024611505015571
  38. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003) 899 [ math/0208033 ].
  39. B. Keller, Cluster algebras, quiver representations and triangulated categories, in Triangulated categories, Cambridge University Press, Cambridge U.K. (2003).
  40. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [ INSPIRE ].
  41. Brown Francis C. S., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak{M}}_{0,n}$, 10.24033/asens.2099
  42. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering amplitudes and the positive Grassmannian, Cambridge University Press, Cambridge U.K. (2012).
  43. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., An analytic result for the two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep03(2010)099
  44. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep05(2010)084
  45. Goncharov A. B., Spradlin M., Vergu C., Volovich A., Classical Polylogarithms for Amplitudes and Wilson Loops, 10.1103/physrevlett.105.151605
  46. Dixon Lance J., Drummond James M., Henn Johannes M., Bootstrapping the three-loop hexagon, 10.1007/jhep11(2011)023
  47. Dixon Lance J., Drummond James M., Henn Johannes M., Analytic result for the two-loop six-point NMHV amplitude in $ \mathcal{N} = {4} $ super Yang-Mills theory, 10.1007/jhep01(2012)024
  48. Dixon Lance J., Drummond James M., von Hippel Matt, Pennington Jeffrey, Hexagon functions and the three-loop remainder function, 10.1007/jhep12(2013)049
  49. Dixon Lance J., von Hippel Matt, Bootstrapping an NMHV amplitude through three loops, 10.1007/jhep10(2014)065
  50. Dixon Lance J., Drummond James M., Duhr Claude, Pennington Jeffrey, The four-loop remainder function and multi-Regge behavior at NNLLA in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory, 10.1007/jhep06(2014)116
  51. Dixon Lance J., von Hippel Matt, McLeod Andrew J., The four-loop six-gluon NMHV ratio function, 10.1007/jhep01(2016)053
  52. Golden John, Spradlin Marcus, An analytic result for the two-loop seven-point MHV amplitude in N $$ \mathcal{N} $$ = 4 SYM, 10.1007/jhep08(2014)154
  53. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., A two-loop octagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep09(2010)015
  54. Heslop Paul, Khoze Valentin V., Analytic results for MHV Wilson loops, 10.1007/jhep11(2010)035
  55. Caron-Huot Simon, He Song, Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, 10.1007/jhep08(2013)101
  56. A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [ INSPIRE ].
  57. Duhr Claude, Gangl Herbert, Rhodes John R., From polygons and symbols to polylogarithmic functions, 10.1007/jhep10(2012)075
  58. Caron-Huot S., Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, 10.1007/jhep12(2011)066
  59. Drummond J. M., Papathanasiou G., Spradlin M., A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, 10.1007/jhep03(2015)072
  60. Caron-Huot Simon, Larsen Kasper J., Uniqueness of two-loop master contours, 10.1007/jhep10(2012)026
  61. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [ INSPIRE ].
  62. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [ INSPIRE ].
  63. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [ INSPIRE ].
  64. Fadin V.S., Lipatov L.N., BFKL pomeron in the next-to-leading approximation, 10.1016/s0370-2693(98)00473-0
  65. Camici G., Ciafaloni M., Irreducible part of the next-to-leading BFKL kernel, 10.1016/s0370-2693(97)01073-3
  66. Ciafaloni Marcello, Camici Gianni, Energy scale(s) and next-to-leading BFKL equation, 10.1016/s0370-2693(98)00551-6
  67. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [ arXiv:0802.2065 ] [ INSPIRE ].
  68. Bartels J., Lipatov L. N., Sabio Vera A., N=4 supersymmetric Yang–Mills scattering amplitudes at high energies: the Regge cut contribution, 10.1140/epjc/s10052-009-1218-5
  69. Brower Richard C., Nastase Horatiu, Schnitzer Howard J., Tan Chung-I., Implications of multi-Regge limits for the Bern–Dixon–Smirnov conjecture, 10.1016/j.nuclphysb.2009.02.009
  70. Brower Richard C., Nastase Horatiu, Schnitzer Howard J., Tan Chung-I., Analyticity for multi-Regge limits of the Bern–Dixon–Smirnov amplitudes, 10.1016/j.nuclphysb.2009.07.026
  71. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [ arXiv:0809.1822 ] [ INSPIRE ].
  72. Hatsuda Yasuyuki, Wilson loop OPE, analytic continuation and multi-Regge limit, 10.1007/jhep10(2014)038
  73. Basso Benjamin, Caron-Huot Simon, Sever Amit, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, 10.1007/jhep01(2015)027
  74. Drummond J. M., Papathanasiou G., Hexagon OPE resummation and multi-Regge kinematics, 10.1007/jhep02(2016)185
  75. Bartels J., Kotanski J., Schomerus V., Excited hexagon Wilson loops for strongly coupled $ \mathcal{N} = 4 $ SYM, 10.1007/jhep01(2011)096
  76. J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The excited hexagon reloaded, arXiv:1311.1512 [ INSPIRE ].
  77. L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [ arXiv:1011.2673 ] [ INSPIRE ].
  78. L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [ arXiv:1008.1016 ] [ INSPIRE ].
  79. Lipatov Lev, Prygarin Alexander, Schnitzer Howard J., The Multi-Regge limit of NMHV amplitudes in N=4 SYM theory, 10.1007/jhep01(2013)068
  80. Dixon Lance J., Duhr Claude, Pennington Jeffrey, Single-valued harmonic polylogarithms and the multi-Regge limit, 10.1007/jhep10(2012)074
  81. Pennington Jeffrey, The six-point remainder function to all loop orders in the multi-Regge limit, 10.1007/jhep01(2013)059
  82. Broedel Johannes, Sprenger Martin, Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, 10.1007/jhep05(2016)055
  83. Brown Francis C.S., Polylogarithmes multiples uniformes en une variable, 10.1016/j.crma.2004.02.001
  84. A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All two-loop MHV amplitudes in multi-Regge kinematics from applied symbology, Phys. Rev. D 85 (2012) 085019 [ arXiv:1112.6365 ] [ INSPIRE ].
  85. J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [ arXiv:1112.6366 ] [ INSPIRE ].
  86. Bargheer Till, Papathanasiou Georgios, Schomerus Volker, The two-loop symbol of all multi-Regge regions, 10.1007/jhep05(2016)012
  87. Bartels J., Schomerus V., Sprenger M., Multi-Regge limit of the n-gluon bubble ansatz, 10.1007/jhep11(2012)145
  88. Bartels J., Schomerus V., Sprenger M., Heptagon amplitude in the multi-Regge regime, 10.1007/jhep10(2014)067
  89. Bartels J., Schomerus V., Sprenger M., The Bethe roots of Regge cuts in strongly coupled N = 4 $$ \mathcal{N}=4 $$ SYM theory, 10.1007/jhep07(2015)098
  90. Del Duca Vittorio, Dixon Lance J., Duhr Claude, Pennington Jeffrey, The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms, 10.1007/jhep02(2014)086
  91. Fadin V.S., Lipatov L.N., BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N=4 SUSY, 10.1016/j.physletb.2011.11.048
  92. Del Duca Vittorio, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, 10.1103/physrevd.52.1527
  93. J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the n = 7 scattering amplitude in N = 4 SYM theory in the multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [ arXiv:1311.2061 ] [ INSPIRE ].
  94. J. Bartels, A. Kormilitzin and L.N. Lipatov, Analytic structure of the n = 7 scattering amplitude in N = 4 theory in multi-Regge kinematics: conformal Regge cut contribution, Phys. Rev. D 91 (2015) 045005 [ arXiv:1411.2294 ] [ INSPIRE ].
  95. L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [ INSPIRE ].
  96. Fadin V.S., Fiore R., Kozlov M.G., Reznichenko A.V., Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, 10.1016/j.physletb.2006.03.031
  97. Caron-Huot Simon, When does the gluon reggeize?, 10.1007/jhep05(2015)093
  98. Parker Daniel E., Scherlis Adam, Spradlin Marcus, Volovich Anastasia, Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes, 10.1007/jhep11(2015)136
  99. F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/~brown/RHpaper5.pdf .
  100. F. Brown, Single-valued motivic periods and multiple zeta values, SIGMA 2 (2014) e25 [ arXiv:1309.5309 ] [ INSPIRE ].
  101. F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410 .
  102. REMIDDI E., VERMASEREN J. A. M., HARMONIC POLYLOGARITHMS, 10.1142/s0217751x00000367
  103. VERMASEREN J. A. M., HARMONIC SUMS, MELLIN TRANSFORMS AND INTEGRALS, 10.1142/s0217751x99001032
  104. Moch Sven, Uwer Peter, Weinzierl Stefan, Nested sums, expansion of transcendental functions, and multiscale multiloop integrals, 10.1063/1.1471366
  105. Weinzierl Stefan, Symbolic expansion of transcendental functions, 10.1016/s0010-4655(02)00261-8
  106. S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [ math-ph/0508008 ] [ INSPIRE ].
  107. Schnetz Oliver, Graphical functions and single-valued multiple polylogarithms, 10.4310/cntp.2014.v8.n4.a1
  108. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [ INSPIRE ].
  109. Caron-Huot S., He Song, Jumpstarting the all-loop S-matrix of planar $ \mathcal{N} = {4} $ super Yang-Mills, 10.1007/jhep07(2012)174
  110. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Dual superconformal symmetry of scattering amplitudes in super-Yang–Mills theory, 10.1016/j.nuclphysb.2009.11.022
  111. Nandan Dhritiman, Paulos Miguel F., Spradlin Marcus, Volovich Anastasia, Star integrals, convolutions and simplices, 10.1007/jhep05(2013)105
  112. Papathanasiou Georgios, Hexagon Wilson loop OPE and harmonic polylogarithms, 10.1007/jhep11(2013)150
  113. T. Bargheer, Systematics of the multi-Regge three-loop symbol, arXiv:1606.07640 [ INSPIRE ].
  114. J. Broedel, M. Sprenger and A.T. Orjuela, Towards single-valued polylogarithms in two variables for the seven-point remainder function in multi-Regge-kinematics, arXiv:1606.08411 [ INSPIRE ].