User menu

The Incompressible Navier Stokes Flow in Two Dimensions with Prescribed Vorticity

Bibliographic reference Chanillo, Sagun ; Van Schaftingen, Jean ; Yung, Po Lam. The Incompressible Navier Stokes Flow in Two Dimensions with Prescribed Vorticity. In: Sagun Chanillo, Bruno Franchi, Guozhen Lu, Carlos Perez, Eric T. Sawyer, Harmonic Analysis, Partial Differential Equations and Applications. In Honor of Richard L. Wheeden, Springer  2017, p. 19-25
Permanent URL http://hdl.handle.net/2078.1/184673
  1. Ben-Artzi Matania, Global solutions of two-dimensional Navier-Stokes and euler equations, 10.1007/bf00387712
  2. Bourgain Jean, Brezis Haïm, New estimates for the Laplacian, the div–curl, and related Hodge systems, 10.1016/j.crma.2003.12.031
  3. Bourgain Jean, Brezis Haim, New estimates for elliptic equations and Hodge type systems, 10.4171/jems/80
  4. H. Brezis, Remarks on the preceding paper by M. Ben-Artzi: global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Ration. Mech. Anal. 128 (4), 359–360 (1994)
  5. Chanillo Sagun, Van Schaftingen Jean, Yung Po-Lam, Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem, 10.1007/s11401-016-1069-y
  6. Chanillo Sagun, Van Schaftingen Jean, Yung Po-Lam, Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism, 10.1016/j.crma.2015.10.005
  7. Chanillo Sagun, Yung Po-Lam, An Improved Strichartz Estimate for Systems with Divergence Free Data, 10.1080/03605302.2011.594475
  8. Giga Yoshikazu, Miyakawa Tetsuro, Osada Hirofumi, Two-dimensional Navier-Stokes flow with measures as initial vorticity, 10.1007/bf00281355
  9. T. Kato, The Navier-Stokes equation for an incompressible fluid in $$\mathbb{R}^{2}$$ with a measure as the initial vorticity. Differ. Integral Equ. 7 (3–4), 949–966 (1994)
  10. C.W. Oseen, Über Wirbelbewegung in einer reibenden Flüssigheit. Ark. Mat. Astr. Fys. 7, 1–13 (1912)
  11. Van Schaftingen Jean, Estimates for L1-vector fields, 10.1016/j.crma.2004.05.013