User menu

A guide to the Choquard equation

Bibliographic reference Moroz, Vitaly ; Van Schaftingen, Jean. A guide to the Choquard equation. In: Journal of Fixed Point Theory and Applications, Vol. 19, no.1, p. 773-813 (2016)
Permanent URL
  1. Ackermann Nils, On a periodic Schr�dinger equation with nonlocal superlinear part, 10.1007/s00209-004-0663-y
  2. Ackermann Nils, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, 10.1016/j.jfa.2005.11.010
  3. Alves Claudianor O., Cassani Daniele, Tarsi Cristina, Yang Minbo, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R 2 , 10.1016/j.jde.2016.04.021
  4. Alves Claudianor O., Figueiredo Giovany M., Yang Minbo, Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field, 10.3233/asy-151337
  5. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(30, 55:48 (2016)
  6. Alves Claudianor O., Yang Minbo, Existence of semiclassical ground state solutions for a generalized Choquard equation, 10.1016/j.jde.2014.08.004
  7. Alves Claudianor O., Yang Minbo, Multiplicity and concentration of solutions for a quasilinear Choquard equation, 10.1063/1.4884301
  8. Ambrosetti Antonio, On Schrödinger-Poisson Systems, 10.1007/s00032-008-0094-z
  9. Ambrosetti A, Garcia Azorero J, Peral I, Perturbation of Δu+u(N+2)/(N−2)=0, the Scalar Curvature Problem in RN, and Related Topics, 10.1006/jfan.1999.3390
  11. Ambrosetti Antonio, Rabinowitz Paul H, Dual variational methods in critical point theory and applications, 10.1016/0022-1236(73)90051-7
  12. Arriola Enrique Ruíz, Soler Juan, 10.1023/a:1010369224196
  13. Aschbacher W. H., Fröhlich J., Graf G. M., Schnee K., Troyer M., Symmetry breaking regime in the nonlinear Hartree equation, 10.1063/1.1488673
  14. Azzollini Antonio, d’Avenia Pietro, Generalized Schrödinger-Poisson type systems, 10.3934/cpaa.2013.12.867
  15. Baernstein, A. II.: A unified approach to symmetrization. In: Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., vol. XXXV, pp. 47–91. Cambridge Univ. Press, Cambridge (1994)
  16. Bahrami Mohammad, Großardt André, Donadi Sandro, Bassi Angelo, The Schrödinger–Newton equation and its foundations, 10.1088/1367-2630/16/11/115007
  17. Bartsch Thomas, Weth Tobias, Willem Michel, Partial symmetry of least energy nodal solutions to some variational problems, 10.1007/bf02787822
  18. Battaglia, L., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations in the plane. arXiv:1604.03294
  19. Beckner William, Pitt's inequality with sharp convolution estimates, 10.1090/s0002-9939-07-09216-7
  20. Beckner William, Pitt's inequality and the fractional Laplacian: Sharp error estimates, 10.1515/form.2011.056
  21. Bellazzini Jacopo, Frank Rupert L., Visciglia Nicola, Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, 10.1007/s00208-014-1046-2
  22. Benci Vieri, Cerami Giovanna, Existence of positive solutions of the equation −Δu + a(x)u = u(N + 2)(N − 2) in RN, 10.1016/0022-1236(90)90120-a
  23. Benci Vieri, Fortunato Donato, An eigenvalue problem for the Schrödinger-Maxwell equations, 10.12775/tmna.1998.019
  24. Benguria Rafael, Brezis Haim, Lieb Elliott H., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, 10.1007/bf01942059
  25. Berestycki, H., Gallouët, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307–310 (1983)
  26. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)
  28. Bonanno Claudio, d'Avenia Pietro, Ghimenti Marco, Squassina Marco, Soliton dynamics for the generalized Choquard equation, 10.1016/j.jmaa.2014.02.063
  29. Bonheure Denis, Van Schaftingen Jean, Bound state solutions for a class of nonlinear Schrödinger equations, 10.4171/rmi/537
  30. Bongers, A.: Existenzaussagen für die Choquard-Gleichung: ein nichtlineares Eigenwertproblem der Plasma-Physik. Z. Angew. Math. Mech. 60(7), T240–T242 (1980)
  31. Brascamp H.J, Lieb Elliott H, Luttinger J.M, A general rearrangement inequality for multiple integrals, 10.1016/0022-1236(74)90013-5
  32. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)
  33. Brezis Haim, Lieb Elliott, A Relation Between Pointwise Convergence of Functions and Convergence of Functionals, 10.2307/2044999
  34. Brezis Haïm, Nirenberg Louis, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, 10.1002/cpa.3160360405
  35. Brock Friedemann, Solynin Alexander Yu., 10.1090/s0002-9947-99-02558-1
  36. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)
  37. Buffoni B., Jeanjean L., Stuart C. A., Existence of a nontrivial solution to a strongly indefinite semilinear equation, 10.1090/s0002-9939-1993-1145940-x
  38. Burchard Almut, Cases of Equality in the Riesz Rearrangement Inequality, 10.2307/2118534
  39. Jeanjean Louis, Byeon Jaeyoung, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, 10.3934/dcds.2007.19.255
  40. Byeon Jaeyoung, Jeanjean Louis, Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity, 10.1007/s00205-006-0019-3
  41. Byeon Jaeyoung, Wang Zhi-Qiang, Standing waves with a critical frequency for nonlinear Schr�dinger equations, II, 10.1007/s00526-002-0191-8
  42. Cao, D.M.: The existence of nontrivial solutions to a generalized Choquard-Pekar equation. Acta Math. Sci. (Chinese) 9(1), 101–112 (1989). (Chinese)
  43. Cao, P., Wang, J., Zou, W.: On the standing waves for nonlinear Hartree equation with confining potential. J. Math. Phys. 53(3), 033702, 27 (2012)
  44. Castro, A., Cossio, J., Neuberger, J.M.: A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems. Electron. J. Differ. Equ. 1998(2), 18 (1998)
  45. Castro Alfonso, Cossio Jorge, Neuberger John M., A Sign-Changing Solution for a Superlinear Dirichlet Problem, 10.1216/rmjm/1181071858
  47. Catto I., Le Bris C., Lions P.-L., On some periodic Hartree-type models for crystals, 10.1016/s0294-1449(01)00071-3
  48. Cerami G, Solimini S, Struwe M, Some existence results for superlinear elliptic boundary value problems involving critical exponents, 10.1016/0022-1236(86)90094-7
  49. Chen, J., Guo, B.: Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrödinger equation. Appl. Math. Comput. 186(1), 83–92 (2007)
  50. Chen Shaowei, Xiao Liqin, Existence of a nontrivial solution for a strongly indefinite periodic Choquard system, 10.1007/s00526-014-0797-7
  51. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12(2), 347–354 (2005)
  52. Chen Wenxiong, Li Congming, Ou Biao, Classification of solutions for an integral equation, 10.1002/cpa.20116
  53. Chen Huyuan, Zhou Feng, Classification of isolated singularities of positive solutions for Choquard equations, 10.1016/j.jde.2016.08.047
  54. Choquard Philippe, Stubbe Joachim, The One-Dimensional Schrödinger–Newton Equations, 10.1007/s11005-007-0174-y
  55. Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger- Newton model—an ODE approach. Differ. Integral Equ. 21(7–8), 665–679 (2008)
  56. Cingolani Silvia, Clapp Mónica, Secchi Simone, Multiple solutions to a magnetic nonlinear Choquard equation, 10.1007/s00033-011-0166-8
  57. Cingolani, S., Clapp, M., Secchi, S.: Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete Contin. Dyn. Syst. Ser. S 6(4), 891–908 (2013)
  58. Cingolani, S., Secchi, S.: Multiple S1-orbits for the Schrödinger-Newton system. Differ. Integral Equ. 26(9/10), 867–884 (2013)
  59. Cingolani Silvia, Secchi Simone, Ground states for the pseudo-relativistic Hartree equation with external potential, 10.1017/s0308210513000450
  60. Cingolani Silvia, Secchi Simone, Squassina Marco, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, 10.1017/s0308210509000584
  61. Cingolani Silvia, Weth Tobias, On the planar Schrödinger–Poisson system, 10.1016/j.anihpc.2014.09.008
  62. Clapp Mónica, Salazar Dora, Positive and sign changing solutions to a nonlinear Choquard equation, 10.1016/j.jmaa.2013.04.081
  63. Coti Zelati, V., Nolasco, M.: Existence of ground states for nonlinear, pseudorelativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(1), 51–72 (2011)
  64. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, p. 18. Springer, Berlin (1987)
  66. d'Avenia Pietro, Siciliano Gaetano, Squassina Marco, On fractional Choquard equations, 10.1142/s0218202515500384
  67. Deng, Y., Lu, L., Shuai, W.: Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration. J. Math. Phys. 56(6), 061503, 15 (2015)
  68. del Pino Manuel, Felmer Patricio L., Semi-classical States for Nonlinear Schrödinger Equations, 10.1006/jfan.1996.3085
  69. De Nápoli Pablo L., Drelichman Irene, Elementary Proofs of Embedding Theorems for Potential Spaces of Radial Functions, Applied and Numerical Harmonic Analysis (2016) ISBN:9783319274652 p.115-138, 10.1007/978-3-319-27466-9_8
  70. Di Cosmo Jonathan, Van Schaftingen Jean, Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, 10.1016/j.jde.2015.02.016
  71. Diósi L., Gravitation and quantum-mechanical localization of macro-objects, 10.1016/0375-9601(84)90397-9
  72. Disconzi, M.M.: A priori estimates for a critical Schrödinger-Newton equation. In: Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, Electron. J. Differ. Equ. Conf., vol. 20, pp. 39–51, Texas State Univ., San Marcos (2013)
  73. Donsker, M.D., Varadhan, S.R.S.: The polaron problem and large deviations. Phys. Rep. 77(3), 235–237 (1981, New stochasitic methods in physics)
  74. Donsker M. D., Varadhan S. R. S., Asymptotics for the polaron, 10.1002/cpa.3160360408
  75. Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. (4) 192(4), 553–568 (2013)
  76. du Plessis Nicolaas, Some theorems about the Riesz fractional integral, 10.1090/s0002-9947-1955-0086938-3
  77. du Plessis, N.: An introduction to potential theory, University Mathematical Monographs, No. 7. Hafner Publishing Co., Darien, Conn., Oliver and Boyd, Edinburgh (1970)
  78. Dymarskii Ya. M., The Periodic Choquard Equation, Differential Operators and Related Topics (2000) ISBN:9783034895521 p.87-99, 10.1007/978-3-0348-8403-7_8
  79. Efinger H. J., On the theory of certain nonlinear Schrödinger equations with nonlocal interaction, 10.1007/bf02722264
  80. Feng Binhua, Sharp threshold of global existence and instability of standing wave for the Schrödinger–Hartree equation with a harmonic potential, 10.1016/j.nonrwa.2016.01.012
  81. Frank Rupert L., Geisinger Leander, The Ground State Energy of a Polaron in a Strong Magnetic Field, 10.1007/s00220-015-2367-z
  82. Floer Andreas, Weinstein Alan, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 10.1016/0022-1236(86)90096-0
  83. Frank, R.L., Lenzmann, E.: On ground states for the L2-critical boson star equation. arXiv:0910.2721
  84. Frank Rupert L., Lieb Elliott H., Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality, 10.1007/s00526-009-0302-x
  85. Franklin J, Guo Y, McNutt A, Morgan A, The Schrödinger–Newton system with self-field coupling, 10.1088/0264-9381/32/6/065010
  86. Frohlich H., Theory of Electrical Breakdown in Ionic Crystals, 10.1098/rspa.1937.0106
  87. Fröhlich H., Electrons in lattice fields, 10.1080/00018735400101213
  88. Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In: Séminaire: Équations aux Dérivées Partielles (2003), Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, pp. Exp. No. XIX, 26 (2004)
  89. Fröhlich Jürg, Jonsson B. Lars G., Lenzmann Enno, Boson Stars as Solitary Waves, 10.1007/s00220-007-0272-9
  90. Gao, F., Yang, M.: On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. arXiv:1604.00826
  91. Gao, F., Yang, M.: Existence and multiplicity of solutions for a class of Choquard equations with Hardy-Littlewood-Sobolev critical exponent. arXiv:1605.05038
  92. Genev Hristo, Venkov George, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, 10.3934/dcdss.2012.5.903
  93. Ghergu Marius, Taliaferro Steven D., Pointwise bounds and blow-up for Choquard–Pekar inequalities at an isolated singularity, 10.1016/j.jde.2016.03.004
  94. Ghimenti Marco, Moroz Vitaly, Van Schaftingen Jean, Least action nodal solutions for the quadratic Choquard equation, 10.1090/proc/13247
  95. Ghimenti Marco, Van Schaftingen Jean, Nodal solutions for the Choquard equation, 10.1016/j.jfa.2016.04.019
  96. Ghoussoub, N.: Self-dual partial differential systems and their variational principles, Springer Monographs in Mathematics. Springer, New York (2009)
  97. Gidas B., Ni Wei-Ming, Nirenberg L., Symmetry and related properties via the maximum principle, 10.1007/bf01221125
  98. Ginibre Jean, Velo Giorgio, On a class of non linear Schr�dinger equations with non local interaction, 10.1007/bf01214768
  99. Giulini, D., Großardt, A.: The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. Class. Quantum Gravity 29(21), 215010, 25 (2012)
  100. Griesemer, M., Hantsch, F., Wellig, D.: On the magnetic Pekar functional and the existence of bipolarons. Rev. Math. Phys. 24(6), 1250014, 13 (2012)
  101. Guo Qing, Su Yiming, Instability of standing waves for inhomogeneous Hartree equations, 10.1016/j.jmaa.2016.01.056
  102. Gustafson, K., Sather, D.: A branching analysis of the Hartree equation. Rend. Mat. (6) 4, 723–734 (1971)
  103. Guzmán F. Siddhartha, Ureña-López L. Arturo, Newtonian collapse of scalar field dark matter, 10.1103/physrevd.68.024023
  104. Guzmán F. Siddhartha, Ureña-López L. Arturo, Evolution of the Schrödinger-Newton system for a self-gravitating scalar field, 10.1103/physrevd.69.124033
  105. Hajaiej, H.: Schrödinger systems arising in nonlinear optics and quantum mechanics. Part I. Math. Models Methods Appl. Sci. 22(7), 1250010, 27 (2012)
  106. Hajaiej Hichem, On Schrödinger systems arising in nonlinear optics and quantum mechanics: II., 10.1088/0951-7715/26/4/959
  107. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press (1952)
  108. Herbst Ira W., Spectral theory of the operator (p 2+m 2)1/2−Ze 2/r, 10.1007/bf01609852
  109. Hirata, J., Ikoma, N., Tanaka, K.: Nonlinear scalar field equations in RN: mountainpass and symmetric mountain-pass approaches. Topol. Methods Nonlinear Anal. 35(2), 253–276 (2010)
  110. Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger-Poisson-Slater problem. Commun. Contemp. Math. 14(1), 1250003, 22 (2012)
  111. Jeanjean Louis, Existence of solutions with prescribed norm for semilinear elliptic equations, 10.1016/s0362-546x(96)00021-1
  112. Jeong Wonjeong, Seok Jinmyoung, On perturbation of a functional with the mountain pass geometry : Applications to the nonlinear Schrödinger–Poisson equations and the nonlinear Klein–Gordon–Maxwell equations, 10.1007/s00526-013-0595-7
  114. Jones KRW, Newtonian Quantum Gravity, 10.1071/ph951055
  115. Karasev M. V., Maslov V. P., Quasiclassical soliton solutions of the Hartree equation. Newtonian interaction with screening, 10.1007/bf01018720
  116. Kawohl Bernhard, Rearrangements and Convexity of Level Sets in PDE, ISBN:9783540156932, 10.1007/bfb0075060
  117. Krasnosel’skiĭ, M.A.: Topological methods in the theory of nonlinear integral equations, translated by A. H. Armstrong, p. 6. MacMillan, New York (1964)
  118. Kumar Deepak, Soni Vikram, Single particle Schrödinger equation with gravitational self-interaction, 10.1016/s0375-9601(00)00361-3
  119. Küpper, T., Zhang, Z., Xia, H.: Multiple positive solutions and bifurcation for an equation related to Choquard’s equation. Proc. Edinb. Math. Soc. (2) 46(3), 597–607 (2003)
  120. Landkof, N.S.: Foundations of modern potential theory, translated by A. P. Doohovskoy, Grundlehren der mathematischen Wissenschaften, Springer, New York–Heidelberg (1972)
  121. Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. (N.S.) 42(3), 291–363 (2005)
  122. Lei Yutian, On the regularity of positive solutions of a class of Choquard type equations, 10.1007/s00209-012-1036-6
  123. Lei Yutian, Qualitative Analysis for the Static Hartree-Type Equations, 10.1137/120879282
  124. Lenzmann Enno, Uniqueness of ground states for pseudorelativistic Hartree equations, 10.2140/apde.2009.2.1
  125. Lewin Mathieu, Nam Phan Thành, Rougerie Nicolas, Derivation of Hartreeʼs theory for generic mean-field Bose systems, 10.1016/j.aim.2013.12.010
  126. Li, G.-B., Ye, H.-Y.: The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations. J. Math. Phys. 55(12), 121501, 19 (2014)
  127. Lieb Elliott H., Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation, 10.1002/sapm197757293
  128. Lieb Elliott H., Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities, 10.2307/2007032
  129. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence (2001)
  130. Lieb E. H., Thomas L. E., Exact Ground State Energy of the Strong-Coupling Polaron, 10.1007/s002200050040
  131. Lieb Elliott H., Yau Horng-Tzer, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, 10.1007/bf01217684
  132. Lions P.L., The Choquard equation and related questions, 10.1016/0362-546x(80)90016-4
  133. Lions, P.-L.: Compactness and topological methods for some nonlinear variational problems of mathematical physics, Nonlinear problems: present and future (Los Alamos, N.M., 1981), North-Holland Math. Stud., vol. 61, pp. 17–34. North-Holland, Amsterdam–New York (1982)
  134. Lions P.L., The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. * *Mp denotes the Marcinkiewicz space or weak Lp space, 10.1016/s0294-1449(16)30428-0
  135. Lions P. L., Solutions of Hartree-Fock equations for Coulomb systems, 10.1007/bf01205672
  136. Lopes Orlando, Mariş Mihai, Symmetry of minimizers for some nonlocal variational problems, 10.1016/j.jfa.2007.10.004
  137. Lü Dengfeng, Existence and Concentration of Solutions for a Nonlinear Choquard Equation, 10.1007/s00009-014-0428-8
  138. Macrì Marta, Nolasco Margherita, Stationary solutions for the non-linear Hartree equation with a slowly varying potential, 10.1007/s00030-009-0030-0
  139. Ma Li, Zhao Lin, Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation, 10.1007/s00205-008-0208-3
  140. Maeda, M., Masaki, S.: An example of stable excited state on nonlinear Schrödinger equation with nonlocal nonlinearity. Differ. Integral Equ. 26(7–8), 731–756 (2013)
  141. Manfredi Giovanni, The Schrödinger–Newton equations beyond Newton, 10.1007/s10714-014-1846-4
  142. Mawhin Jean, Willem Michel, Critical Point Theory and Hamiltonian Systems, ISBN:9781441930897, 10.1007/978-1-4757-2061-7
  143. Menzala Gustavo Perla, On regular solutions of a nonlinear equation of Choquard's type, 10.1017/s0308210500012191
  144. Menzala, G.P.: On the nonexistence of solutions for an elliptic problem in unbounded domains. Funkcial. Ekvac. 26(3), 231–235 (1983)
  145. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. Calc. Var. Partial Differ. Equ. arXiv:1507.02837
  146. Møller, C., The energy-momentum complex in general relativity and related problems. In: Les théories relativistes de la gravitation (Royaumont, 1959), pp. 15–29. Éditions du Centre National de la Recherche Scientifique, Paris (1959)
  147. Moroz Irene M, Penrose Roger, Tod Paul, Spherically-symmetric solutions of the Schrödinger-Newton equations, 10.1088/0264-9381/15/9/019
  148. Moroz Vitaly, Van Schaftingen Jean, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, 10.1007/s00526-009-0249-y
  149. Moroz, V., Van Schaftingen, J.: Nonlocal Hardy type inequalities with optimal constants and remainder terms. Ann. Univ. Buchar. Math. Ser. 3 (LXI)(2), 187–200 (2012)
  150. Moroz Vitaly, Van Schaftingen Jean, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, 10.1016/j.jde.2012.12.019
  151. Moroz Vitaly, Van Schaftingen Jean, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, 10.1016/j.jfa.2013.04.007
  152. Moroz Vitaly, Van Schaftingen Jean, Semi-classical states for the Choquard equation, 10.1007/s00526-014-0709-x
  153. Moroz Vitaly, Van Schaftingen Jean, Existence of groundstates for a class of nonlinear Choquard equations, 10.1090/s0002-9947-2014-06289-2
  154. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (12 pages) (2015)
  155. Muckenhoupt Benjamin, Wheeden Richard, Weighted norm inequalities for fractional integrals, 10.1090/s0002-9947-1974-0340523-6
  156. Mugnai Dimitri, The Schrödinger–Poisson System with Positive Potential, 10.1080/03605302.2011.558551
  157. Mukherjee, T., Sreenadh, K.: Existence and multiplicity results for Brezis-Nirenberg type fractional Choquard equation. arXiv:1605.06805
  158. Mugnai Dimitri, Pseudorelativistic Hartree Equation with General Nonlinearity: Existence, Non-existence and Variational Identities, 10.1515/ans-2013-0403
  159. Nolasco Margherita, Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential, 10.3934/cpaa.2010.9.1411
  160. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle, p. 2. Akademie Verlag, Berlin (1954)
  161. Penrose Roger, On Gravity's role in Quantum State Reduction, 10.1007/bf02105068
  162. Quantum computation, entanglement and state reduction, 10.1098/rsta.1998.0256
  163. Pinchover Yehuda, Tintarev Kyril, A ground state alternative for singular Schrödinger operators, 10.1016/j.jfa.2005.05.015
  164. Pohožaev, S.I.: On the eigenfunctions of the equation $$\Delta u+\lambda f(u)=0$$ Δ u + λ f ( u ) = 0 . Dokl. Akad. Nauk SSSR 165, 36–39 (1965) (Russian); English transl., Soviet Math. Dokl. 6, 1408–1411 (1965)
  165. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. In: Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton (1951)
  166. Pucci Patrizia, Serrin James, , 10.1512/iumj.1986.35.35036
  167. Quittner, P., Souplet, P.: Superlinear parabolic problems: Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher, p. 17. Birkhäuser, Basel (2007)
  168. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of non-linear problems (Varenna, 1974), 139–195. Edizioni Cremonese, Rome (1974)
  169. Rabinowitz Paul, Minimax Methods in Critical Point Theory with Applications to Differential Equations, ISBN:9780821807156, 10.1090/cbms/065
  170. Rabinowitz Paul H., On a class of nonlinear Schr�dinger equations, 10.1007/bf00946631
  171. Rabinowitz Paul H., Critical Point Theory and Applications to Differential Equations: A Survey, Topological Nonlinear Analysis (1995) ISBN:9781461275848 p.464-513, 10.1007/978-1-4612-2570-6_6
  172. Riesz, F.: Sur une inégalité intégrale. J. Lond. Math. Soc. S1-5(3), 162 (1930)
  173. Riesz M., L'intégrale de Riemann-Liouville et le problème de Cauchy pour l'équation des ondes, 10.24033/bsmf.1309
  174. Riesz Marcel, L'intégrale de Riemann-Liouville et le problème de Cauchy, 10.1007/bf02395016
  175. Rosenfeld L., On quantization of fields, 10.1016/0029-5582(63)90279-7
  176. Rubin, B.S.: One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions. Mat. Zametki 34(4), 521–533 (1983). (Russian)
  177. RUFFINI REMO, BONAZZOLA SILVANO, Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State, 10.1103/physrev.187.1767
  178. Ruiz David, The Schrödinger–Poisson equation under the effect of a nonlinear local term, 10.1016/j.jfa.2006.04.005
  179. Ruiz David, On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases, 10.1007/s00205-010-0299-5
  180. Ruiz, D., Van Schaftingen, J.: Odd symmetry of least energy nodal solutions for the Choquard equation (2016). arXiv:1606.05668
  181. Salazar Dora, Vortex-type solutions to a magnetic nonlinear Choquard equation, 10.1007/s00033-014-0412-y
  182. Samko, S.G.: Hypersingular integrals and their applications, Analytical Methods and Special Functions, vol. 5. Taylor & Francis Ltd, London (2002)
  183. Samko, S.: Best constant in the weighted Hardy inequality: the spatial and spherical version. Fract. Calc. Appl. Anal. 8(1), 39–52 (2005)
  184. Schunck Franz E, Mielke Eckehard W, General relativistic boson stars, 10.1088/0264-9381/20/20/201
  185. Secchi Simone, A note on Schrödinger–Newton systems with decaying electric potential, 10.1016/
  186. Siegel, D., Talvila, E.: Pointwise growth estimates of the Riesz potential. In: Dynam. Contin. Discrete Impuls. Systems 5(1–4), 185–194 (1999, Differential equations and dynamical systems (Waterloo, ON, 1997))
  187. Sobolev, S.L.: On a theorem of functional analysis. Math. Sbornik 4 46(3), 5–9 (1938) (Russian); English transl., Amer. Math. Soc. Transl. 2 (1938), 39–68
  188. Souto,M.A.S., de Lima, R.N.: Choquard equations with mixed potential. arXiv:1506.08179
  189. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)
  190. Stein, E.M., Weiss, G.: Fractional integrals on $$n$$ n -dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)
  191. Stein E. M., Zygmund A., Boundedness of Translation Invariant Operators on Holder Spaces and L p -Spaces, 10.2307/1970445
  192. Struwe, M.: Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (2008)
  193. Stuart C.A, Bifurcation for variational problems when the linearisation has no eigenvalues, 10.1016/0022-1236(80)90063-4
  194. Stubbe, J.: Bound states of two-dimensional Schrödinger-Newton equations. arXiv:0807.4059
  195. Stubbe Joachim, Vuffray Marc, Bound states of the Schrödinger–Newton model in low dimensions, 10.1016/
  196. Sun, X., Zhang, Y.: Multi-peak solution for nonlinear magnetic Choquard type equation. J. Math. Phys. 55(3), 031508 (25 p.) (2014)
  197. Tarantello G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, 10.1016/s0294-1449(16)30238-4
  198. Tod K.P., The ground state energy of the Schrödinger–Newton equation, 10.1016/s0375-9601(01)00059-7
  199. Thim, J.: Asymptotics and inversion of Riesz potentials through decomposition in radial and spherical parts. Ann. Mat. Pura Appl. (4) 195(2), 323–341 (2016)
  200. Tod Paul, Moroz Irene M, An analytical approach to the Schrödinger-Newton equations, 10.1088/0951-7715/12/2/002
  201. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)
  202. Vaira Giusi, Ground states for Schrödinger–Poisson type systems, 10.1007/s11587-011-0109-x
  203. Vaira Giusi, Existence of Bound States for Schrödinger-Newton Type Systems, 10.1515/ans-2013-0214
  204. Van Schaftingen, J., Willem, M.: Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. (JEMS) 10(2), 439–456 (2008)
  205. Van Schaftingen, J., Xia, J.: Solutions to the Choquard equation under coercive potentials. arXiv:1607.00151
  206. Wang Sheng, Wang Linshan, Wei Tengda, Optimal harvesting for a stochastic logistic model with S-type distributed time delay, 10.1080/10236198.2016.1269761
  207. Wang Tao, Yi Taishan, Uniqueness of positive solutions of the Choquard type equations, 10.1080/00036811.2016.1138473
  208. Weinstein Michael I., Nonlinear Schr�dinger equations and sharp interpolation estimates, 10.1007/bf01208265
  209. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger-Newton equations. J. Math. Phys. 50(1), 012905 (22 p.) (2009)
  210. Weth, T.: Spectral and variational characterizations of solutions to semilinear eigenvalue problems, doctoral dissertation, p. 6. Johannes Gutenberg-Universität, Mainz (2001)
  211. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1
  212. Xiang, C.-L.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. arXiv:1506.01550
  213. Xie, T., Xiao, L., Wang, J.: Existence of multiple positive solutions for Choquard equation with perturbation. Adv. Math. Phys. 760157 (10 p.) (2015)
  214. Yafaev D., Sharp Constants in the Hardy–Rellich Inequalities, 10.1006/jfan.1999.3462
  215. Yang Minbo, Ding Yanheng, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, 10.3934/cpaa.2013.12.771
  216. Yang Minbo, Wei Yuanhong, Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, 10.1016/j.jmaa.2013.02.062
  217. Yang, M., Zhang, J., Zhang, Y.: Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. arXiv:1604.04715
  218. Ye Hongyu, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN, 10.1016/j.jmaa.2015.06.012
  219. Ye, H.-Y.: Mass minimizers and concentration for nonlinear Choquard equations in $${\mathbb{R}}^N$$ R N . arXiv:1502.01560
  220. Z. Zhang, Multiple solutions of the Choquard equation. In: Differential equations and control theory (Wuhan: 1994), Lecture Notes in Pure and Appl. Math., vol. 176, pp. 477–482. Dekker, New York (1996)
  221. Zhang, Z.: Multiple solutions of nonhomogeneous for related Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 20(3), 374–379 (2000)
  222. Zhengjie Zhang, Multiple solutions of nonhomogeneous Chouquard’s equations, 10.1007/bf02669683
  223. Zhang Zhengjie, Tassilo Küpper, Hu Ailian, Xia Hongqiang, EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD'S EQUATION, 10.1016/s0252-9602(06)60070-2
  224. Zhao Leiga, Zhao Fukun, On the existence of solutions for the Schrödinger–Poisson equations, 10.1016/j.jmaa.2008.04.053
  225. Zhao Leiga, Zhao Fukun, Shi Junping, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, 10.1007/s00526-015-0879-1