User menu

Model based demography: towards a research agenda

Bibliographic reference Franck, Robert. Model based demography: towards a research agenda. In: Daniel Courgeau, Jakub Bijak, Robert Franck, Eric Silverman, Agent Based Modelling in Population Studies – Concepts, Methods, and Applications, Jan van Bavel and André Grow  2016, p.Chapter 2
Permanent URL http://hdl.handle.net/2078.1/184021
  1. Aalen, O. O. (1975). Statistical inference for a family of counting processes. PhD thesis, University of California, Berkeley.
  2. Ahlburg Dennis A., Simple versus complex models: Evaluation, accuracy, and combining, 10.1080/08898489509525406
  3. Alho, J. M., & Spencer, B. D. (2005). Statistical demography and forecasting. Berlin/Heidelberg: Springer.
  4. Alkema Leontine, Raftery Adrian E., Clark Samuel J., Probabilistic projections of HIV prevalence using Bayesian melding, 10.1214/07-aoas111
  5. Diaz Belinda Aparicio, Fent Thomas, Prskawetz Alexia, Bernardi Laura, Transition to Parenthood: The Role of Social Interaction and Endogenous Networks, 10.1007/s13524-011-0023-6
  6. Axtell R. L., Epstein J. M., Dean J. S., Gumerman G. J., Swedlund A. C., Harburger J., Chakravarty S., Hammond R., Parker J., Parker M., Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley, 10.1073/pnas.092080799
  7. Bacon, F. (1620). Novum Organum. London: J. Bill. English translation: Spedding, J., Ellis, R. L., & Heath, D. D. (1863). The works (Vol. VIII). Boston: Taggard and Thompson.
  8. Bassu, S. (2009). Metretique, éthique et politique: le Protagoras et le Politique de Platon. Dissertatio, 29, 85–114.
  9. Bassu, S. (2011). Ordre et mesure, kosmos et metron de la pensée archaïque à la philosophie platonicienne. In S. Alexandre & E. Rogan (Eds.), Actes du colloque “Ordres et désordres”, Université Paris 1 and Université Paris Ouest, Nanterre-La Défense, 4–5 June 2010. Available via: Zetesis, vol. 2 [Online], https://f.hypotheses.org/wp-content/blogs.dir/3211/files/2015/04/2Bassu.pdf .
  10. Bayes Mr., Price Mr., An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S., 10.1098/rstl.1763.0053
  11. Bijak, J. (2010). Forecasting international migration in Europe: A Bayesian view (Springer Series on Demographic Methods and Population Analysis, Vol. 24). Dordrecht: Springer.
  12. Bijak Jakub, Hilton Jason, Silverman Eric, Cao Viet Dung, Reforging the Wedding Ring: : Exploring a Semi-Artificial Model of Population for the United Kingdom with Gaussian process, 10.4054/demres.2013.29.27
  13. Billari, F., & Prskawetz, A. (Eds.). (2003). Agent-based computational demography. Using simulation to improve our understanding of demographic behaviour. New York: Physica-Verlag.
  14. Blayo Chantal, La condition d'homogénéité en analyse démographique et en analyse statistique des biographies, 10.2307/1534465
  15. Boudon, R. (1977). Effet pervers et ordre social. Paris: Presses Universitaires de France.
  16. Brenner Thomas, Werker Claudia, A Taxonomy of Inference in Simulation Models, 10.1007/s10614-007-9102-6
  17. Burch Thomas K., Data, Models, Theory and Reality: The Structure of Demographic Knowledge, Contributions to Economics (2003) ISBN:9783790815504 p.19-40, 10.1007/978-3-7908-2715-6_2
  18. Burch Thomas K., Demography in a new key : A theory of population theory, 10.4054/demres.2003.9.11
  19. Casini, L., Illari, P. M., Russo, F., & Williamson, J. (2011). Models for prediction, explanation and control: Recursive Bayesian networks. Theoria, 26(1), 5–33.
  20. Charbit Yves, Petit Véronique, Toward a Comprehensive Demography: Rethinking the Research Agenda on Change and Response, 10.1111/j.1728-4457.2011.00409.x
  21. Chattoe Edmund, The Role of Agent-Based Modelling in Demographic Explanation, Contributions to Economics (2003) ISBN:9783790815504 p.41-54, 10.1007/978-3-7908-2715-6_3
  22. Clark Samuel J., Thomas Jason, Bao Le, Estimates of Age-Specific Reductions in HIV Prevalence in Uganda: Bayesian Melding Estimation and Probabilistic Population Forecast with an HIV-enabled Cohort Component Projection Model, 10.4054/demres.2012.27.26
  23. Conte R., Gilbert N., Bonelli G., Cioffi-Revilla C., Deffuant G., Kertesz J., Loreto V., Moat S., Nadal J. -P., Sanchez A., Nowak A., Flache A., San Miguel M., Helbing D., Manifesto of computational social science, 10.1140/epjst/e2012-01697-8
  24. Courgeau, D. (2007). Multilevel synthesis. From the group to the individual. Dordrecht: Springer.
  25. Courgeau, D. (2012). Probability and social science. Methodological relationships between the two approaches (Methodos Series 10). Dordrecht: Springer.
  26. Courgeau Daniel, La mesure dans les sciences de la population, 10.3917/caph.135.0051
  27. Courgeau, D., & Franck, R. (2007). Demography, a fully formed science or a science in the making? An outline programme, Population-E, 62 (1), pp. 39–45. (La démographie, science constituée ou en voie de constitution? Esquisse d’un programme. Population, 62(1), 39–45).
  28. Courgeau, D., & Lelièvre, E. (1992). Event history analysis in demography. Oxford: Clarendon.
  29. Courgeau Daniel, Bijak Jakub, Franck Robert, Silverman Eric, Are the four Baconian idols still alive in demography?, 10.14428/rqj2014.02.02.02
  30. Di Paolo, E. A., Noble, J., & Bullock, S. (2000). Simulation models as opaque thought experiments. In M. Bedau, J. McCaskill, N. Packard, & S. Rasmussen (Eds.), Proceedings of the 7th international conference on artificial life (pp. 497–506). Cambridge, MA: MIT Press.
  31. Doob, J. L. (1953). Stochastic processes. New York/Chichester: Wiley.
  32. Ducheyne, S. (2005). Bacon’s idea and Newton’s practice of induction. Philosophica, 76, 115–128.
  33. Durkheim, E. (1897). Le suicide. Paris: Alcan.
  34. Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), article 12. http://jasss.soc.surrey.ac.uk/11/4/12.html .
  35. Franck, R. (Ed.). (2002a). The explanatory power of models. Bridging the gap between empirical and theoretical research in the social sciences (Methodos series, Vol. 1). Boston/Dordrecht/London: Kluwer Academic Publishers.
  36. The Explanatory Power of Models, ISBN:9789048161225, 10.1007/978-1-4020-4676-6
  37. Geard, N., McCaw, J. M., Dorin, A., Korb, K. B., & McVernon, J. (2013). Synthetic population dynamics: A model of household demography. Journal of Artificial Societies and Social Simulation, 16(1), article 8. http://jasss.soc.surrey.ac.uk/16/1/8.html .
  38. Godfrey-Smith Peter, The strategy of model-based science, 10.1007/s10539-006-9054-6
  39. Goldstein, H. (1987). Multilevel models in educational and social research. London: Arnold.
  40. Graunt, J. (1662). Natural and political observations mentioned in a following index, and made upon the bills of mortality. London: Tho. Roycroft.
  41. Grimm Volker, Berger Uta, Bastiansen Finn, Eliassen Sigrunn, Ginot Vincent, Giske Jarl, Goss-Custard John, Grand Tamara, Heinz Simone K., Huse Geir, Huth Andreas, Jepsen Jane U., Jørgensen Christian, Mooij Wolf M., Müller Birgit, Pe’er Guy, Piou Cyril, Railsback Steven F., Robbins Andrew M., Robbins Martha M., Rossmanith Eva, Rüger Nadja, Strand Espen, Souissi Sami, Stillman Richard A., Vabø Rune, Visser Ute, DeAngelis Donald L., A standard protocol for describing individual-based and agent-based models, 10.1016/j.ecolmodel.2006.04.023
  42. Henry Louis, D'un problème fondamental de l'analyse démographique, 10.2307/1524607
  43. Hirschman Charles, THE FUTURE OF DEMOGRAPHY, 10.1080/17441730802496458
  44. Holland, J. H. (1995). Hidden order. Reading: Addison-Wesley.
  45. Huneman Philippe, Mapping an expanding territory: computer simulations in evolutionary biology, 10.1007/s40656-014-0005-2
  46. Huyghens, C. (1657). De ratiociniis in ludo aleae. Leyde: Elzevier.
  47. Ibrahim Joseph G., Chen Ming-Hui, Sinha Debajyoti, Bayesian Survival Analysis, ISBN:9781441929334, 10.1007/978-1-4757-3447-8
  48. IUSSP [International Union for the Scientific Study of the Populations]. (1982). Multilingual demographic dictionary (2nd ed.). Liège: Ordina.
  49. Kennedy Marc C., O'Hagan Anthony, Bayesian calibration of computer models, 10.1111/1467-9868.00294
  50. Keyfitz Nathan, Models, 10.2307/2060692
  51. Klüver, J., Stoica, C., & Schmidt, J. (2003). Formal models, social theory and computer simulations: Some methodical reflections. Journal of Artificial Societies and Social Simulation, 6(2), article 8, http://jasss.soc.surrey.ac.uk/6/2/8.html .
  52. Kniveton Dominic, Smith Christopher, Wood Sharon, Agent-based model simulations of future changes in migration flows for Burkina Faso, 10.1016/j.gloenvcha.2011.09.006
  53. Kuhn, T. (1962). The structure of scientific revolutions. Chicago/London: The University of Chicago Press.
  54. Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les événements. Mémoires de l’Académie Royale des Sciences de Paris, Tome, VI, 621–656.
  55. Laplace, P. S. (1812). Théorie analytique des Probabilités (Vol. 2). Paris: Courcier Imprimeur.
  56. Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421–431.
  57. Lutz, W. (2012). Demographic metabolism: A predictive theory of socio-economic change. Population and Development Review, 38(Supplement), 283–301.
  58. Mannheim, K. (1928). Das Problem der Generationen. Kölner Vierteljahreshefte für Soziologie, 7(2), 309–330.
  59. Mason, W. M., Wong, G. W., & Entwistle, B. (1983). Contextual analysis through the multilevel linear model. In S. Leinhart (Ed.), Sociological methodology 1983–1984 (pp. 72–103). San Francisco: Jossey-Bass.
  60. McCulloch Warren S., Pitts Walter, A logical calculus of the ideas immanent in nervous activity, 10.1007/bf02478259
  61. Mill, J. S. (1843). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence, and the methods of scientific investigation (Vol. I). London: Harrison.
  62. MORGAN S. PHILIP, LYNCH SCOTT M., Success and Future of Demography : The Role of Data and Methods, 10.1111/j.1749-6632.2001.tb02745.x
  63. Moss, S., & Edmonds, B. (2005). Towards good social science. Journal of Artificial Societies and Social Simulation, 8(4), article 13. http://jasss.soc.surrey.ac.uk/8/4/13.html .
  64. NRC [National Research Council]. (2000). Beyond six billion: Forecasting the world’s population. Washington, DC: National Academies Press.
  65. Oakley J., Bayesian inference for the uncertainty distribution of computer model outputs, 10.1093/biomet/89.4.769
  66. Pascal, B. (1665). Traité du triangle arithmétique, avec quelques autres traités sur le même sujet. Paris: Guillaume Desprez.
  67. Petit, V., & Charbit, Y. (2012). The French school of demography: Contextualising demographic analysis. Population and Development Review, 38(supplement), 322–333.
  68. Petty, W. (1690). Political arithmetick. London: Robert Clavel & Hen. Mortlock.
  69. Polhill Gary, Sutherland Lee-Ann, Gotts Nicholas M., Using Qualitative Evidence to Enhance an Agent-Based Modelling System for Studying Land Use Change, 10.18564/jasss.1563
  70. Poole David, Raftery Adrian E., Inference for Deterministic Simulation Models: The Bayesian Melding Approach, 10.1080/01621459.2000.10474324
  71. Raftery Adrian E., Bayesian Model Selection in Social Research, 10.2307/271063
  72. Raftery A. E., Li N., Sevcikova H., Gerland P., Heilig G. K., Bayesian probabilistic population projections for all countries, 10.1073/pnas.1211452109
  73. Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: Wiley.
  74. Ryder, N. B. (1951). The cohort approach. Essays in the measurement of temporal variations in demographic behaviour. PhD thesis, Princeton University, New York.
  75. Silverman, E., & Bryden, J. (2007). From artificial societies to new social science theory. In F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in artificial life, 9th European conference, ECAL 2007 proceedings (pp. 645–654). Berlin/Heidelberg: Springer.
  76. Silverman, E., Bijak, J., & Noble, J. (2011). Feeding the beast: Can computational demographic models free us from the tyranny of data? In T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, & R. Doursat (Eds.), Advances in artificial life, ECAL 2011: Proceedings of the eleventh European conference on the synthesis and simulation of living systems (pp. 747–754). Cambridge, MA: MIT Press.
  77. Silverman, E., Bijak, J., Hilton, J., Cao, V., & Noble, J. (2013). When demography met social simulation: A tale of two modelling approaches. Journal of Artificial Societies and Social Simulation, 16(4), article 9. http://jasss.soc.surrey.ac.uk/16/4/9.html .
  78. Smith Stanley K., Further thoughts on simplicity and complexity in population projection models, 10.1016/s0169-2070(97)00029-0
  79. Tabutin Dominique, Whither demography? Strengths and Weaknesses of the Discipline over Fifty Years of Change, 10.3917/pope.701.0015
  80. Thagard, P. (1993). Computational philosophy of science. Cambridge, MA: MIT Press.
  81. Willekens, F. (2005). Biographic forecasting: Bridging the micro-macro gap in population forecasting. New Zealand Population Review, 31(1), 77–124.
  82. Willekens, F. (2012). Migration: A perspective from complexity science. Paper for the Complexity Science for the Real World workshop on migration, Chilworth. 16 Feb 2012.
  83. Xie Yu, Demography: Past, Present, and Future, 10.1080/01621459.2000.10474248
  84. Whelpton P. K., Cohort Analysis of Fertility, 10.2307/2086675
  85. Bullock, S., & Silverman, E. (2008). Levins and the legitimacy of artificial worlds. A Cross-Disciplinary Workshop “Epistemological Perspectives on Simulation”, Lisbon, 2–3 October 2008.
  86. Bijak Jakub, Bryant John, Bayesian demography 250 years after Bayes, 10.1080/00324728.2015.1122826