User menu

Autoregressive moving average infinite hidden Markov-switching models

Bibliographic reference Bauwens, Luc ; Carpentier, Jean-François ; Dufays, Arnaud. Autoregressive moving average infinite hidden Markov-switching models. In: Journal of Business and Economic Statistics, Vol. 35, no.2, p. 162-182 (2017)
Permanent URL
  1. Amisano Gianni, Giacomini Raffaella, Comparing Density Forecasts via Weighted Likelihood Ratio Tests, 10.1198/073500106000000332
  2. Atchadé Yves F., Rosenthal Jeffrey S., On adaptive Markov chain Monte Carlo algorithms, 10.3150/bj/1130077595
  3. Basawa I. V., Lund Robert, Large Sample Properties of Parameter Estimates for Periodic ARMA Models, 10.1111/1467-9892.00246
  4. Bauwens Luc, Dufays Arnaud, Rombouts Jeroen V.K., Marginal likelihood for Markov-switching and change-point GARCH models, 10.1016/j.jeconom.2013.08.017
  5. Bauwens Luc, Koop Gary, Korobilis Dimitris, Rombouts Jeroen V.K., The Contribution of Structural Break Models to Forecasting Macroeconomic Series : STRUCTURAL BREAK MODELS IN FORECASTING MACROECONOMIC SERIES, 10.1002/jae.2387
  6. Beal M.J., Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), 23 (2006)
  7. Blackwell David, MacQueen James B., Ferguson Distributions Via Polya Urn Schemes, 10.1214/aos/1176342372
  8. Chib Siddhartha, Marginal Likelihood from the Gibbs Output, 10.1080/01621459.1995.10476635
  9. Chib Siddhartha, Calculating posterior distributions and modal estimates in Markov mixture models, 10.1016/0304-4076(95)01770-4
  10. Chib Siddhartha, Estimation and comparison of multiple change-point models, 10.1016/s0304-4076(97)00115-2
  11. Del Moral Pierre, Doucet Arnaud, Jasra Ajay, Sequential Monte Carlo samplers, 10.1111/j.1467-9868.2006.00553.x
  12. Doornik Jurgen A., A Markov-switching model with component structure for US GNP, 10.1016/j.econlet.2012.10.035
  13. Sequential Monte Carlo Methods in Practice, ISBN:9781441928870, 10.1007/978-1-4757-3437-9
  14. ———, Journal of Financial Econometrics (2015)
  15. Ferguson Thomas S., A Bayesian Analysis of Some Nonparametric Problems, 10.1214/aos/1176342360
  16. Fox Emily B., Sudderth Erik B., Jordan Michael I., Willsky Alan S., A sticky HDP-HMM with application to speaker diarization, 10.1214/10-aoas395
  17. Francq Christian, Gautier Antony, Estimation of time-varying ARMA models with Markovian changes in regime, 10.1016/j.spl.2004.10.009
  18. Francq Christian, Zakoı¨an Jean-Michel, Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference, 10.1016/j.csda.2007.08.003
  19. Fruhwirth-Schnatter Sylvia, Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques, 10.1111/j.1368-423x.2004.00125.x
  20. Geweke John, Bayesian Inference in Econometric Models Using Monte Carlo Integration, 10.2307/1913710
  21. Davidson Russell, MacKinnon James G., Improving the reliability of bootstrap tests with the fast double bootstrap, 10.1016/j.csda.2006.04.001
  22. Girolami Mark, Calderhead Ben, Riemann manifold Langevin and Hamiltonian Monte Carlo methods : Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods, 10.1111/j.1467-9868.2010.00765.x
  23. Gneiting Tilmann, Raftery Adrian E, Strictly Proper Scoring Rules, Prediction, and Estimation, 10.1198/016214506000001437
  24. Gneiting Tilmann, Ranjan Roopesh, Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules, 10.1198/jbes.2010.08110
  25. Goldfeld Stephen M., Quandt Richard E., A Markov model for switching regressions, 10.1016/0304-4076(73)90002-x
  26. Goutte Stéphane, Conditional Markov regime switching model applied to economic modelling, 10.1016/j.econmod.2013.12.007
  27. Gray Stephen F., Modeling the conditional distribution of interest rates as a regime-switching process, 10.1016/0304-405x(96)00875-6
  28. Haas M., A New Approach to Markov-Switching GARCH Models, 10.1093/jjfinec/nbh020
  29. Hamilton James D., A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, 10.2307/1912559
  30. Henneke Jan S., Rachev Svetlozar T., Fabozzi Frank J., Nikolov Metodi, MCMC-based estimation of Markov Switching ARMA–GARCH models, 10.1080/00036840802552379
  31. Ishwaran Hemant, Zarepour Mahmoud, Exact and approximate sum representations for the Dirichlet process, 10.2307/3315951
  32. JASRA AJAY, STEPHENS DAVID A., DOUCET ARNAUD, TSAGARIS THEODOROS, Inference for Lévy-Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo : Lévy-driven stochastic volatility, 10.1111/j.1467-9469.2010.00723.x
  33. Jensen Mark J., Maheu John M., Bayesian semiparametric stochastic volatility modeling, 10.1016/j.jeconom.2010.01.014
  34. Jensen Mark J., Maheu John M., Bayesian semiparametric multivariate GARCH modeling, 10.1016/j.jeconom.2013.03.009
  35. Jensen Mark J., Maheu John M., Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture, 10.1016/j.jeconom.2013.08.018
  36. Jochmann Markus, Modeling U.S. Inflation Dynamics: A Bayesian Nonparametric Approach, 10.1080/07474938.2013.806199
  37. Kivinen J., Proceedings of the IEEE International Conference on Computer Vision (2007)
  38. Klaassen Franc, Improving GARCH volatility forecasts with regime-switching GARCH, 10.1007/s001810100100
  39. Kurihara K., Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07) (2007)
  40. Marin Jean-Michel, Mengersen Kerrie, Robert Christian P., Bayesian Modelling and Inference on Mixtures of Distributions, Handbook of Statistics (2005) ISBN:9780444515391 p.459-507, 10.1016/s0169-7161(05)25016-2
  41. Rabiner L.R., A tutorial on hidden Markov models and selected applications in speech recognition, 10.1109/5.18626
  42. Sethuraman J., Statistica Sinica, 4, 639 (1994)
  44. STOCK JAMES H., WATSON MARK W., Why Has U.S. Inflation Become Harder to Forecast?, 10.1111/j.1538-4616.2007.00014.x
  45. Teh Yee Whye, Jordan Michael I, Beal Matthew J, Blei David M, Hierarchical Dirichlet Processes, 10.1198/016214506000000302
  46. Vakilzadeh M., Proceedings of the 9th International Conference on Structural Dynamics, 3029 (2014)
  47. Van Gael J., Proceedings of the 25th International Conference on Machine Learning (2008)
  48. Xie Wangang, Lewis Paul O., Fan Yu, Kuo Lynn, Chen Ming-Hui, Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection, 10.1093/sysbio/syq085
  49. Xifara T., Sherlock C., Livingstone S., Byrne S., Girolami M., Langevin diffusions and the Metropolis-adjusted Langevin algorithm, 10.1016/j.spl.2014.04.002