User menu

Polar decomposition of regularly varying time series in star-shaped metric spaces

Bibliographic reference Segers, Johan ; Zhao, Yuwei ; Meinguet, Thomas. Polar decomposition of regularly varying time series in star-shaped metric spaces. In: Extremes : statistical theory and applications in science, engineering and economics, Vol. 20, no. 3, p. 539-566 (2017)
Permanent URL
  1. Basrak Bojan, Segers Johan, Regularly varying multivariate time series, 10.1016/
  2. Basrak Bojan, Krizmanić Danijel, Segers Johan, A functional limit theorem for dependent sequences with infinite variance stable limits, 10.1214/11-aop669
  3. Billingsley, P.: Probability and measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, a Wiley-Interscience Publication (1995)
  4. Convergence of Probability Measures, ISBN:9780470316962, 10.1002/9780470316962
  5. Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, ISBN:9780511721434, 10.1017/cbo9780511721434
  6. Davis Richard A., Mikosch Thomas, The extremogram: A correlogram for extreme events, 10.3150/09-bej213
  7. Davis Richard A., Mikosch Thomas, Zhao Yuwei, Measures of serial extremal dependence and their estimation, 10.1016/
  8. Dombry Clément, Ribatet Mathieu, Functional regular variations, Pareto processes and peaks over threshold, 10.4310/sii.2015.v8.n1.a2
  9. Drees Holger, Segers Johan, Warchoł Michał, Statistics for tail processes of Markov chains, 10.1007/s10687-015-0217-1
  10. Gin� Evarist, Hahn Marjorie G., Vatan Pirooz, Max-infinitely divisible and max-stable sample continuous processes, 10.1007/bf01198427
  11. de Haan, L., Lin, T.: On convergence toward an extreme value distribution in C[0,1]. Ann. Probab. 29(1), 467–483 (2001)
  12. Hult Henrik, Lindskog Filip, Extremal behavior of regularly varying stochastic processes, 10.1016/
  13. Hult Henrik, Lindskog Filip, Regular variation for measures on metric spaces, 10.2298/pim0694121h
  14. Janssen Anja, Drees Holger, A stochastic volatility model with flexible extremal dependence structure, 10.3150/15-bej699
  15. Janssen A., Segers J., Markov tail chains, 10.1239/jap/1421763332
  16. Kuelbs, J., Mandrekar, V.: Domains of attraction of stable measures on a Hilbert space. Studia. Math. 50, 149–162 (1974)
  17. Kulik Rafał, Soulier Philippe, Heavy tailed time series with extremal independence, 10.1007/s10687-014-0213-x
  18. Leadbetter M. R., Extremes and local dependence in stationary sequences, 10.1007/bf00532484
  19. Lindskog Filip, Resnick Sidney I., Roy Joyjit, Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps, 10.1214/14-ps231
  20. Mandrekar, V., Zinn, J.: Central limit problem for symmetric case: convergence to non-Gaussian laws. Studia Math. 67(3), 279–296 (1980)
  21. Meinguet Thomas, Maxima of moving maxima of continuous functions, 10.1007/s10687-011-0136-8
  22. Meinguet, T., Segers, J.: Regularly varying time series in Banach spaces. arXiv: 1001.3262 [mathPR] (2010)
  23. Mikosch Thomas, Wintenberger Olivier, The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains, 10.1007/s00440-013-0504-1
  24. Molchanov, I.: Theory of random sets. Probability and its Applications (New York), Springer-Verlag London, Ltd., London (2005)
  25. Pollard, D.: A user’s guide to measure theoretic probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol 8. Cambridge University Press (2002)
  26. Resnick Sidney, 10.1023/a:1025148622954
  27. Resnick Sidney I., Point Processes, Regular Variation and Weak Convergence, 10.2307/1427239
  28. Resnick Sidney I., Extreme Values, Regular Variation and Point Processes, ISBN:9780387759524, 10.1007/978-0-387-75953-1
  29. Resnick, S.I.: Heavy-tail phenomena. Springer Series in Operations Research and Financial Engineering, Springer, New York, probabilistic and statistical modeling (2007)
  30. Samorodnitsky, G., Owada, T.: Tail measures of stochastic processes or random fields with regularly varying tails. Tech. rep., Cornell University, Ithaca, NY.. (2012)
  31. van der Vaart Aad W., Wellner Jon A., Weak Convergence and Empirical Processes, ISBN:9781475725476, 10.1007/978-1-4757-2545-2