User menu

Marginal standardization of upper semicontinuous processes with application to max-stable processes

Bibliographic reference Sabourin, Anne ; Segers, Johan. Marginal standardization of upper semicontinuous processes with application to max-stable processes. In: Journal of Applied Probability, Vol. 54, no. 3, p. 773-796 (2017)
Permanent URL http://hdl.handle.net/2078.1/183731
  1. Beer Gerald, Topologies on Closed and Closed Convex Sets, ISBN:9789048143337, 10.1007/978-94-015-8149-3
  2. Davison, Proc. R. Soc. London A 468, 581 (2012)
  3. Haan L. De, A Spectral Representation for Max-stable Processes, 10.1214/aop/1176993148
  4. Gin� Evarist, Hahn Marjorie G., Vatan Pirooz, Max-infinitely divisible and max-stable sample continuous processes, 10.1007/bf01198427
  5. Huser R., Davison A. C., Space-time modelling of extreme events, 10.1111/rssb.12035
  6. McFadden, Structural Analysis of Discrete Data with Econometric Applications, 198 (1981)
  7. Ann. Operat. Res., 18, 3 (1989)
  8. Molchanov, Theory of Random Sets (2005)
  9. Norberg Tommy, Semicontinuous processes in multi-dimensional extreme value theory, 10.1016/0304-4149(87)90188-8
  10. Pickands III James, The two-dimensional Poisson process and extremal processes, 10.1017/s0021900200114640
  11. Resnick Sidney I., Extreme Values, Regular Variation and Point Processes, ISBN:9780387759524, 10.1007/978-0-387-75953-1
  12. Resnick Sidney I., Roy Rishin, Random USC Functions, Max-Stable Processes and Continuous Choice, 10.1214/aoap/1177005937
  13. Rockafellar R. Tyrrell, Wets Roger J. B., Variational Analysis, ISBN:9783540627722, 10.1007/978-3-642-02431-3
  14. Rüschendorf Ludger, On the distributional transform, Sklar's theorem, and the empirical copula process, 10.1016/j.jspi.2009.05.030
  15. Salinetti Gabriella, Wets Roger J.-B., On the Convergence in Distribution of Measurable Multifunctions (Random Sets) Normal Integrands, Stochastic Processes and Stochastic Infima, 10.1287/moor.11.3.385
  16. Schlather Martin, 10.1023/a:1020977924878
  17. Publ. Inst. Statist. Univ. Paris, 8, 229 (1959)
  18. Vervaat Wim, Stationary Self-Similar Extremal Processes and Random Semicontinuous Functions, Dependence in Probability and Statistics (1986) ISBN:9781461581635 p.457-473, 10.1007/978-1-4615-8162-8_22
  19. Vervaat Wim, Narrow and vague convergence of set functions, 10.1016/0167-7152(88)90002-8
  20. Vervaat, Probability and Lattices, 1 (1997)
  21. Vervaat, Probability and Lattices (1997)