User menu

Effective mass and Fermi surface complexity factor from ab initio band structure calculations

Bibliographic reference Gibbs, Zachary M. ; Ricci, Francesco ; Li, Guodong ; Zhu, Hong ; Persson, Kristin ; et. al. Effective mass and Fermi surface complexity factor from ab initio band structure calculations. In: N P J Computational Materials, Vol. 3, no.1, p. 1-7 (2017)
Permanent URL
  1. Chen Wei, Pöhls Jan-Hendrik, Hautier Geoffroy, Broberg Danny, Bajaj Saurabh, Aydemir Umut, Gibbs Zachary M., Zhu Hong, Asta Mark, Snyder G. Jeffrey, Meredig Bryce, White Mary Anne, Persson Kristin, Jain Anubhav, Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment, 10.1039/c5tc04339e
  2. Yan Jun, Gorai Prashun, Ortiz Brenden, Miller Sam, Barnett Scott A., Mason Thomas, Stevanović Vladan, Toberer Eric S., Material descriptors for predicting thermoelectric performance, 10.1039/c4ee03157a
  3. Yang, J. et al. Evaluation of half-heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).
  4. Yang, J. et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Comput. Mater. 2, 15015 (2016).
  5. Pei Yanzhong, Wang Heng, Snyder G. J., Band Engineering of Thermoelectric Materials, 10.1002/adma.201202919
  6. Pei Yanzhong, LaLonde Aaron D., Wang Heng, Snyder G. Jeffrey, Low effective mass leading to high thermoelectric performance, 10.1039/c2ee21536e
  7. Zhou, M. et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band. Phys. Chem. Chem. Phys. 16, 20741–20748 (2014).
  8. Pei Yanzhong, Shi Xiaoya, LaLonde Aaron, Wang Heng, Chen Lidong, Snyder G. Jeffrey, Convergence of electronic bands for high performance bulk thermoelectrics, 10.1038/nature09996
  9. Zhao Li-Dong, Dravid Vinayak P., Kanatzidis Mercouri G., The panoscopic approach to high performance thermoelectrics, 10.1039/c3ee43099e
  10. Tan Gangjian, Shi Fengyuan, Doak Jeff W., Sun Hui, Zhao Li-Dong, Wang Pengli, Uher Ctirad, Wolverton Chris, Dravid Vinayak P., Kanatzidis Mercouri G., Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe, 10.1039/c4ee01463d
  11. Liu Wei, Tan Xiaojian, Yin Kang, Liu Huijun, Tang Xinfeng, Shi Jing, Zhang Qingjie, Uher Ctirad, Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance ofn-TypeMg2Si1−xSnxSolid Solutions, 10.1103/physrevlett.108.166601
  12. Tan, G. et al. High thermoelectric performance of p-Type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 136, 7006–7017 (2014).
  13. Dong, X., Yu, H., Li, W., Pei, Y. & Chen, Y. First-principles study on band structures and electrical transports of doped-SnTe. J. Materiomics 2, 158–164 (2016).
  14. Zhang Jiawei, Liu Ruiheng, Cheng Nian, Zhang Yubo, Yang Jihui, Uher Ctirad, Shi Xun, Chen Lidong, Zhang Wenqing, High-Performance Pseudocubic Thermoelectric Materials from Non-cubic Chalcopyrite Compounds, 10.1002/adma.201400058
  15. Zeier Wolfgang G., Zhu Hong, Gibbs Zachary M., Ceder Gerbrand, Tremel Wolfgang, Snyder G. Jeffrey, Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4, 10.1039/c4tc02218a
  16. Tang, Y. et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14, 1223–1228 (2015).
  17. Zaitsev V. K., Fedorov M. I., Gurieva E. A., Eremin I. S., Konstantinov P. P., Samunin A. Yu., Vedernikov M. V., Highly effectiveMg2Si1−xSnxthermoelectrics, 10.1103/physrevb.74.045207
  18. Fu, C. et al. High band degeneracy contributes to high thermoelectric performance in p-type half-heusler compounds. Adv. Energy Mater. 4, (2014).
  19. Zhang Jiawei, Song Lirong, Madsen Georg K. H., Fischer Karl F. F., Zhang Wenqing, Shi Xun, Iversen Bo B., Designing high-performance layered thermoelectric materials through orbital engineering, 10.1038/ncomms10892
  20. Parker, D., Chen, X. & Singh, D. J. High three-dimensional thermoelectric performance from low-dimensional bands. Phys. Rev. Lett. 110, 146601 (2013).
  21. Shi, H., Parker, D., Du, M.-H. & Singh, D. J. Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2Se from first principles. Phys. Rev. Appl. 3, 014004 (2015).
  22. Hautier Geoffroy, Miglio Anna, Ceder Gerbrand, Rignanese Gian-Marco, Gonze Xavier, Identification and design principles of low hole effective mass p-type transparent conducting oxides, 10.1038/ncomms3292
  23. Hautier, G., Miglio, A., Waroquiers, D., Rignanese, G.-M. & Gonze, X. How does chemistry influence electron effective mass in oxides? A high-throughput computational analysis. Chem. Mater. 26, 5447–5458 (2014).
  24. Bhatia, A. et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016).
  25. Lykke, L., Iversen, B. B. & Madsen, G. K. H. Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations. Phys. Rev. B. 73, 195121 (2006).
  26. Parker David S., May Andrew F., Singh David J., Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case ofp-TypeAgBiSe2, 10.1103/physrevapplied.3.064003
  27. Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
  28. Ashcroft, N. W. & Mermin, N. D. Solid State Physics. (Holt, Rinehart, and Winston, 1976).
  29. May, A. F. & Snyder, G. J. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) (CRC Press, 2012).
  30. May Andrew F., Toberer Eric S., Saramat Ali, Snyder G. Jeffrey, Characterization and analysis of thermoelectric transport inn-typeBa8Ga16−xGe30+x, 10.1103/physrevb.80.125205
  31. Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed. 55, 6826–6841 (2016).
  32. Ravich Yu. I., Efimova B. A., Smirnov I. A., Semiconducting Lead Chalcogenides, ISBN:9781468486094, 10.1007/978-1-4684-8607-0
  33. Dexter R. N., Zeiger H. J., Lax Benjamin, Cyclotron Resonance Experiments in Silicon and Germanium, 10.1103/physrev.104.637
  34. Dresselhaus G., Kip A. F., Kittel C., Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals, 10.1103/physrev.98.368
  35. Allgaier Robert S., Magnetoresistance in PbS, PbSe, and PbTe at 295°, 77.4°, and 4.2°K, 10.1103/physrev.112.828
  36. Chen, X., Parker, D. & Singh, D. J. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci. Rep 3, 3168 (2013).
  37. Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).
  38. Lerner, L. S. Shubnikov-de Haas Effect in Bismuth. Phys. Rev. 127, 1480–1492 (1962).
  39. LaLonde, A. D., Pei, Y., Wang, H. & Jeffrey Snyder, G. Lead telluride alloy thermoelectrics. Mater. Today 14, 526–532 (2011).
  40. Svane A., Christensen N. E., Cardona M., Chantis A. N., van Schilfgaarde M., Kotani T., Quasiparticle self-consistentGWcalculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients, 10.1103/physrevb.81.245120
  41. Mecholsky Nicholas A., Resca Lorenzo, Pegg Ian L., Fornari Marco, Theory of band warping and its effects on thermoelectronic transport properties, 10.1103/physrevb.89.155131
  42. Wang H., Pei Y., LaLonde A. D., Snyder G. J., Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe, 10.1073/pnas.1111419109
  43. Karazhanov S. Zh., Ab initio Studies of the Band Parameters of III–V and II–VI Zinc-Blende Semiconductors, 10.1134/1.1864192
  44. Wang Heng, Pei Yanzhong, LaLonde Aaron D., Snyder G. Jeffrey, Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe, 10.1002/adma.201004200
  45. Kanatzidis, M. G. et al. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460–3470 (2011).
  46. Wang Heng, Wang Jianli, Cao Xianlong, Snyder G. Jeffrey, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit, 10.1039/c3ta14929c
  47. Zhao Li-Dong, He Jiaqing, Hao Shiqiang, Wu Chun-I, Hogan Timothy P., Wolverton C., Dravid Vinayak P., Kanatzidis Mercouri G., Raising the Thermoelectric Performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS, 10.1021/ja306527n
  48. Korkosz Rachel J., Chasapis Thomas C., Lo Shih-han, Doak Jeff W., Kim Yoon Jun, Wu Chun-I, Hatzikraniotis Euripidis, Hogan Timothy P., Seidman David N., Wolverton Chris, Dravid Vinayak P., Kanatzidis Mercouri G., High ZT in p-Type (PbTe)1–2x(PbSe)x(PbS)x Thermoelectric Materials, 10.1021/ja4121583
  49. Yamini, S. A. et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 16, 1835–1840 (2014).
  50. Lee Yeseul, Lo Shih-Han, Androulakis John, Wu Chun-I, Zhao Li-Dong, Chung Duck-Young, Hogan Timothy P., Dravid Vinayak P., Kanatzidis Mercouri G., High-Performance Tellurium-Free Thermoelectrics: All-Scale Hierarchical Structuring of p-Type PbSe–MSe Systems (M = Ca, Sr, Ba), 10.1021/ja400069s
  51. Jaworski, C. M. et al. Valence-band structure of highly efficient p-type thermoelectric PbTe-PbS alloys. Phys. Rev. B 87, 045201–045210 (2013).
  52. Zhang Qian, Cao Feng, Liu Weishu, Lukas Kevin, Yu Bo, Chen Shuo, Opeil Cyril, Broido David, Chen Gang, Ren Zhifeng, Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1–ySey, 10.1021/ja301245b
  53. Wang, H., Gibbs, Z. M., Takagiwa, Y. & Snyder, G. J. Tuning bands of PbSe for better thermoelectric efficiency. Energ. Environ. Sci. 7, 804–811 (2014).
  54. Androulakis John, Todorov Iliya, He Jiaqing, Chung Duck-Young, Dravid Vinayak, Kanatzidis Mercouri, Thermoelectrics from Abundant Chemical Elements: High-Performance Nanostructured PbSe–PbS, 10.1021/ja203022c
  55. Yin Wan-Jian, Ma Jie, Wei Su-Huai, Al-Jassim Mowafak M., Yan Yanfa, Comparative study of defect transition energy calculation methods: The case of oxygen vacancy in In2O3and ZnO, 10.1103/physrevb.86.045211
  56. Gibbs, Z. M. et al. Temperature dependent band gap in PbX (X = S, Se, Te). Appl. Phys. Lett. 103, 262109 (2013).
  57. Allgaier, R. S. & Houston, B. B. Hall coefficient behavior and 2nd valence band in lead telluride. J. Appl. Phys. 37, 302–309 (1966).
  58. Allgaier R. S., Valence Bands in Lead Telluride, 10.1063/1.1777039
  59. Kolomoets, N. V., Vinogradova, M. N. & Sysoeva, L. M. Valence band of PbTe. Sov. Phys. Semicond. 1, 1020–1024 (1968).
  60. Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
  61. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  62. Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
  63. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).