User menu

Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study.

Bibliographic reference Millon, Domitille ; Vlassenbroek, Alain ; Van Maanen, Aline G ; Cambier, Samantha ; Coche, Emmanuel. Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study.. In: European Radiology : journal of the European Congress of Radiology, Vol. 27, no.3, p. 927-937 (2017)
Permanent URL
  1. Kak ACS, M. (1988) Principles of Computerized Tomographic Imaging Principles of Computerized Tomographic Imaging. Institute for Electrical and Electronic Engineers, IEEE Press
  2. Geyer Lucas L., Schoepf U. Joseph, Meinel Felix G., Nance John W., Bastarrika Gorka, Leipsic Jonathon A., Paul Narinder S., Rengo Marco, Laghi Andrea, De Cecco Carlo N., State of the Art: Iterative CT Reconstruction Techniques, 10.1148/radiol.2015132766
  3. Mehta D (2013) Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int J 1:9
  4. Brown KZS, Koehler T (2012) Acceleration of ML iterative algorithms for CT by the use of fast start images. Physics of Medical Imaging, San Diego
  5. Goldman L. W., Principles of CT: Radiation Dose and Image Quality, 10.2967/jnmt.106.037846
  6. (2011) Size-Specific Dose Estimates (SSDE) in Pediatric and adult body CT examinations. American Association of Physicists in Medicine, pp 1–26
  7. (2014) Use of water equivalent diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. American Association of Physicists in Medicine, pp 1–23
  8. Miéville Frédéric A., Gudinchet François, Brunelle Francis, Bochud François O., Verdun Francis R., Iterative reconstruction methods in two different MDCT scanners: Physical metrics and 4-alternative forced-choice detectability experiments – A phantom approach, 10.1016/j.ejmp.2011.12.004
  9. Rossmann Kurt, Point Spread-Function, Line Spread-Function, and Modulation Transfer Function : Tools for the Study of Imaging Systems, 10.1148/93.2.257
  10. Richard Samuel, Husarik Daniela B., Yadava Girijesh, Murphy Simon N., Samei Ehsan, Towards task-based assessment of CT performance: System and object MTF across different reconstruction algorithms : Towards task-based assessment of CT performance, 10.1118/1.4725171
  11. Naylor David A., Tahic Margaret K., Apodizing functions for Fourier transform spectroscopy, 10.1364/josaa.24.003644
  12. Neroladaki Angeliki, Botsikas Diomidis, Boudabbous Sana, Becker Christoph D., Montet Xavier, Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations, 10.1007/s00330-012-2627-7
  13. Gervaise Alban, Osemont Benoît, Lecocq Sophie, Noel Alain, Micard Emilien, Felblinger Jacques, Blum Alain, CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT, 10.1007/s00330-011-2271-7
  14. Saiprasad G, Filliben J, Peskin A et al (2015) Evaluation of low-contrast detectability of iterative reconstruction across multiple institutions, CT scanner manufacturers, and radiation exposure levels. Radiology. doi: 10.1148/radiol.2015141260:141260
  15. Klink Thorsten, Obmann Verena, Heverhagen Johannes, Stork Alexander, Adam Gerhard, Begemann Philipp, Reducing CT radiation dose with iterative reconstruction algorithms: The influence of scan and reconstruction parameters on image quality and CTDIvol, 10.1016/j.ejrad.2014.05.033
  16. Korn A., Fenchel M., Bender B., Danz S., Hauser T. K., Ketelsen D., Flohr T., Claussen C. D., Heuschmid M., Ernemann U., Brodoefel H., Iterative Reconstruction in Head CT: Image Quality of Routine and Low-Dose Protocols in Comparison with Standard Filtered Back-Projection, 10.3174/ajnr.a2749
  17. Rapalino O., Kamalian S., Kamalian S., Payabvash S., Souza L. C. S., Zhang D., Mukta J., Sahani D. V., Lev M. H., Pomerantz S. R., Cranial CT with Adaptive Statistical Iterative Reconstruction: Improved Image Quality with Concomitant Radiation Dose Reduction, 10.3174/ajnr.a2826
  18. Baker Mark E., Dong Frank, Primak Andrew, Obuchowski Nancy A., Einstein David, Gandhi Namita, Herts Brian R., Purysko Andrei, Remer Erick, Vachani Neil, Contrast-to-Noise Ratio and Low-Contrast Object Resolution on Full- and Low-Dose MDCT: SAFIRE Versus Filtered Back Projection in a Low-Contrast Object Phantom and in the Liver, 10.2214/ajr.11.7421
  19. Kilic K., Erbas G., Guryildirim M., Arac M., Ilgit E., Coskun B., Lowering the Dose in Head CT Using Adaptive Statistical Iterative Reconstruction, 10.3174/ajnr.a2585
  20. Pickhardt Perry J., Lubner Meghan G., Kim David H., Tang Jie, Ruma Julie A., del Rio Alejandro Muñoz, Chen Guang-Hong, Abdominal CT With Model-Based Iterative Reconstruction (MBIR): Initial Results of a Prospective Trial Comparing Ultralow-Dose With Standard-Dose Imaging, 10.2214/ajr.12.9382
  21. Schindera Sebastian T., Odedra Devang, Raza Syed Arsalan, Kim Tae Kyoung, Jang Hyun-Jung, Szucs-Farkas Zsolt, Rogalla Patrik, Iterative Reconstruction Algorithm for CT: Can Radiation Dose Be Decreased While Low-Contrast Detectability Is Preserved?, 10.1148/radiol.13122349
  22. McCollough Cynthia H., Yu Lifeng, Kofler James M., Leng Shuai, Zhang Yi, Li Zhoubo, Carter Rickey E., Degradation of CT Low-Contrast Spatial Resolution Due to the Use of Iterative Reconstruction and Reduced Dose Levels, 10.1148/radiol.15142047
  23. Li Ke, Garrett John, Ge Yongshuai, Chen Guang-Hong, Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance : Quantitative assessment of spatial resolution of MBIR method, 10.1118/1.4884038
  24. Löve A, Olsson M-L, Siemund R, Stålhammar F, Björkman-Burtscher I M, Söderberg M, Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels, 10.1259/bjr.20130388