User menu

First-principles study ofCe3+-dopedlanthanum silicate nitride phosphors: Neutral excitation, Stokes shift, and luminescent center identification

Bibliographic reference Jia, Yongchao ; Miglio, Anna ; Poncé, Samuel ; Gonze, Xavier ; Mikami, Masayoshi. First-principles study ofCe3+-dopedlanthanum silicate nitride phosphors: Neutral excitation, Stokes shift, and luminescent center identification. In: Physical review. B, Condensed matter and materials physics, Vol. 93, no. 15, p. 155111 (2016)
Permanent URL
  1. Höppe Henning A., Recent Developments in the Field of Inorganic Phosphors, 10.1002/anie.200804005
  2. Zeuner Martin, Pagano Sandro, Schnick Wolfgang, Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity, 10.1002/anie.201005755
  3. Jia Yongchao, Qiao Hui, Zheng Yuhua, Guo Ning, You Hongpeng, Synthesis and photoluminescence properties of Ce3+ and Eu2+-activated Ca7Mg(SiO4)4 phosphors for solid state lighting, 10.1039/c2cp23343f
  4. Krings Michael, Montana Giuseppe, Dronskowski Richard, Wickleder Claudia, α-SrNCN:Eu2+− A Novel Efficient Orange-Emitting Phosphor, 10.1021/cm102262u
  5. Setlur Anant A., Radkov Emil V., Henderson Claire S., Her Jae-Hyuk, Srivastava Alok M., Karkada Nagaveni, Kishore M. Satya, Kumar N. Prasanth, Aesram Danny, Deshpande Anirudha, Kolodin Boris, Grigorov Ljudmil S., Happek Uwe, Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors, 10.1021/cm100960g
  6. Suehiro Takayuki, Hirosaki Naoto, Xie Rong-Jun, Synthesis and Photoluminescent Properties of (La,Ca)3Si6N11:Ce3+Fine Powder Phosphors for Solid-State Lighting, 10.1021/am101160e
  7. Dorenbos P., 5d-level energies ofCe3+and the crystalline environment. I. Fluoride compounds, 10.1103/physrevb.62.15640
  8. Dorenbos P., 5d−levelenergies ofCe3+and the crystalline environment. II. Chloride, bromide, and iodide compounds, 10.1103/physrevb.62.15650
  9. Dorenbos P., Relating the energy of the[Xe]5d1configuration ofCe3+in inorganic compounds with anion polarizability and cation electronegativity, 10.1103/physrevb.65.235110
  10. Inoue Zenzaburo, Mitomo Mamoru, Ii Nobuo, A crystallographic study of a new compound of lanthanum silicon nitride, LaSi3N5, 10.1007/bf00550562
  11. Woike Michael, Jeitschko Wolfgang, Preparation and Crystal Structure of the Nitridosilicates Ln3Si6N11 (Ln = La, Ce, Pr, Nd, Sm) and LnSi3N5 (Ln = Ce, Pr, Nd), 10.1021/ic00125a005
  12. Yamane Hisanori, Nagura Toshiki, Miyazaki Tomohiro, La3Si6N11, 10.1107/s1600536814009234
  13. Suehiro Takayuki, Hirosaki Naoto, Xie Rong-Jun, Sato Tsugio, Blue-emitting LaSi3N5:Ce3+ fine powder phosphor for UV-converting white light-emitting diodes, 10.1063/1.3193549
  14. Cai L.Y., Wei X.D., Li H., Liu Q.L., Synthesis, structure and luminescence of LaSi3N5:Ce3+ phosphor, 10.1016/j.jlumin.2008.08.005
  15. Kijima Naoto, Seto Takatoshi, Hirosaki Naoto, A New Yellow Phosphor La, 10.1149/1.3211183
  16. George Nathan C., Birkel Alexander, Brgoch Jakoah, Hong Byung-Chul, Mikhailovsky Alexander A., Page Katharine, Llobet Anna, Seshadri Ram, Average and Local Structural Origins of the Optical Properties of the Nitride Phosphor La3–xCexSi6N11(0 , 10.1021/ic402318k
  17. Mikami Masayoshi, Kijima Naoto, 5d Levels of rare-earth ions in oxynitride/nitride phosphors: To what extent is the idea covalency reliable?, 10.1016/j.optmat.2010.07.020
  18. Mikami M., Computational Chemistry Approach for White LED (Oxy)Nitride Phosphors, 10.1149/2.006302jss
  19. Poncé S., Bertrand B., Smet P.F., Poelman D., Mikami M., Gonze X., First-principles and experimental characterization of the electronic and optical properties of CaS and CaO, 10.1016/j.optmat.2013.03.001
  20. Bertrand B., Poncé S., Waroquiers D., Stankovski M., Giantomassi M., Mikami M., Gonze X., Quasiparticle electronic structure of barium-silicon oxynitrides for white-LED application, 10.1103/physrevb.88.075136
  21. Poncé Samuel, Jia Yongchao, Giantomassi Matteo, Mikami Masayoshi, Gonze Xavier, Understanding Thermal Quenching of Photoluminescence in Oxynitride Phosphors from First Principles, 10.1021/acs.jpcc.5b12361
  22. Marsman M., Andriessen J., van Eijk C. W. E, Structure, optical absorption, and luminescence energy calculations ofCe3+defects inLiBaF3, 10.1103/physrevb.61.16477
  23. Erhart Paul, Sadigh Babak, Schleife André, Åberg Daniel, First-principles study of codoping in lanthanum bromide, 10.1103/physrevb.91.165206
  24. Erhart Paul, Schleife André, Sadigh Babak, Åberg Daniel, Quasiparticle spectra, absorption spectra, and excitonic properties of NaI andSrI2from many-body perturbation theory, 10.1103/physrevb.89.075132
  25. Ibrahim Ismail A.M., Lenčéš Zoltán, Šajgalík Pavol, Benco Lubomir, Electronic structure and energy level schemes of RE3+:LaSi3N5 and RE2+:LaSi3N5−xOx phosphors (RE=Ce, Pr, ND, Pm, Sm, Eu) from first principles, 10.1016/j.jlumin.2015.03.035
  26. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  27. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  28. Gonze X., Amadon B., Anglade P.-M., Beuken J.-M., Bottin F., Boulanger P., Bruneval F., Caliste D., Caracas R., Côté M., Deutsch T., Genovese L., Ghosez Ph., Giantomassi M., Goedecker S., Hamann D.R., Hermet P., Jollet F., Jomard G., Leroux S., Mancini M., Mazevet S., Oliveira M.J.T., Onida G., Pouillon Y., Rangel T., Rignanese G.-M., Sangalli D., Shaltaf R., Torrent M., Verstraete M.J., Zerah G., Zwanziger J.W., ABINIT: First-principles approach to material and nanosystem properties, 10.1016/j.cpc.2009.07.007
  29. Torrent Marc, Jollet François, Bottin François, Zérah Gilles, Gonze Xavier, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, 10.1016/j.commatsci.2007.07.020
  30. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  31. Liechtenstein A. I., Anisimov V. I., Zaanen J., Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, 10.1103/physrevb.52.r5467
  32. Jollet François, Torrent Marc, Holzwarth Natalie, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format, 10.1016/j.cpc.2013.12.023
  33. Gracia Jose, Seijo Luis, Barandiarán Zoila, Curulla Daniel, Niemansverdriet Hans, van Gennip Wouter, Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of -doped YAG, 10.1016/j.jlumin.2007.12.027
  34. Pascual José Luis, Schamps Jöel, Barandiarán Zoila, Seijo Luis, Large anomalies due to insufficiency of Madelung embedding inab initiocalculations of4f−5dand4f−6sexcitations of lanthanides in ionic crystals: TheBaF2:Ce3+crystal, 10.1103/physrevb.74.104105
  35. Onida Giovanni, Reining Lucia, Rubio Angel, Electronic excitations: density-functional versus many-body Green’s-function approaches, 10.1103/revmodphys.74.601
  36. Canning A., Chaudhry A., Boutchko R., Grønbech-Jensen N., First-principles study of luminescence in Ce-doped inorganic scintillators, 10.1103/physrevb.83.125115
  37. Chaudhry A., Boutchko R., Chourou S., Zhang G., Grønbech-Jensen N., Canning A., First-principles study of luminescence in Eu2+-doped inorganic scintillators, 10.1103/physrevb.89.155105
  38. Chaudhry A., Canning A., Boutchko R., Weber M. J., Grønbech-Jensen N., Derenzo S. E., First-principles studies of Ce-doped RE2M2O7 (RE = Y, La; M = Ti, Zr, Hf): A class of nonscintillators, 10.1063/1.3561490
  39. Tozer David J., Handy Nicholas C., On the determination of excitation energies using density functional theory, 10.1039/a910321j
  40. Martin Richard M., Electronic Structure : Basic Theory and Practical Methods, ISBN:9780511805769, 10.1017/cbo9780511805769
  41. Alkauskas Audrius, Buckley Bob B, Awschalom David D, Van de Walle Chris G, First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres, 10.1088/1367-2630/16/7/073026
  42. Blasse G., Grabmaier B. C., Luminescent Materials, ISBN:9783540580195, 10.1007/978-3-642-79017-1
  43. Shannon R. D., Prewitt C. T., Effective ionic radii in oxides and fluorides, 10.1107/s0567740869003220
  44. Aryasetiawan F, Gunnarsson O, TheGWmethod, 10.1088/0034-4885/61/3/002
  45. Janak J. F., Proof that∂E∂ni=εin density-functional theory, 10.1103/physrevb.18.7165
  46. Cococcioni Matteo, de Gironcoli Stefano, Linear response approach to the calculation of the effective interaction parameters in theLDA+Umethod, 10.1103/physrevb.71.035105
  47. Wang Ting, Xia Zhiguo, Xiang Qianchuan, Qin Shiqiang, Liu Quanlin, Relationship of 5d-level energies of Ce3+ with the structure and composition of nitride hosts, 10.1016/j.jlumin.2015.05.017
  48. Wang Ting, Xiang Qianchuan, Xia Zhiguo, Chen Jun, Liu Quanlin, Evolution of Structure and Photoluminescence by Cation Cosubstitution in Eu2+-Doped (Ca1–xLix)(Al1–xSi1+x)N3Solid Solutions, 10.1021/acs.inorgchem.5b02845