User menu

The influence of molecular weight distribution of industrial polystyrene on its melt extensional and ultimate properties

Bibliographic reference Shivokhin, Maksim ; Urbanczyk, Laetitia ; Michel, Jacques ; Bailly, Christian. The influence of molecular weight distribution of industrial polystyrene on its melt extensional and ultimate properties. In: Polymer Engineering and Science, Vol. 56, no.9, p. 1012-1020 (2016)
Permanent URL
  1. Venerus D. C., Shiu T.-Y., Kashyap T., Hosttetler J., Continuous lubricated squeezing flow: A novel technique for equibiaxial elongational viscosity measurements on polymer melts, 10.1122/1.3474599
  2. Kashyap Teresita, Venerus David C., Stress Relaxation in Polymer Melts Following Equibiaxial Step Strain, 10.1021/ma100689y
  3. Mick Rebecca M., Shiu Tai-Yi, Venerus David C., Equibiaxial elongational viscosity measurements of commercial polymer melts, 10.1002/pen.23969
  4. J. Wang 2009
  5. Spitael Pieter, Macosko Christopher W., Strain hardening in polypropylenes and its role in extrusion foaming, 10.1002/pen.20214
  6. Gotsis, Polymer Processing Society PPS-18 Proceedings, 1 (2002)
  7. Wagner Manfred H., Bastian Heike, Hachmann Peter, Meissner Joachim, Kurzbeck Stefan, Münstedt H., Langouche F., The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows, 10.1007/s003970050010
  8. Ye Xiangnan, Sridhar Tam, Effects of the Polydispersity on Rheological Properties of Entangled Polystyrene Solutions, 10.1021/ma049642n
  9. Sugimoto Masataka, Tanaka Tadashi, Masubuchi Yuichi, Takimoto Jun-Ichi, Koyama Kiyohito, Effect of chain structure on the melt rheology of modified polypropylene, 10.1002/(sici)1097-4628(19990822)73:8<1493::aid-app18>;2-2
  10. Sugimoto M., Masubuchi Y., Takimoto J., Koyama K., Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow, 10.1021/ma0015525
  11. Huang Qian, Mednova Olga, Rasmussen Henrik K., Alvarez Nicolas J., Skov Anne L., Almdal Kristoffer, Hassager Ole, Concentrated Polymer Solutions are Different from Melts: Role of Entanglement Molecular Weight, 10.1021/ma4008434
  12. Huang Qian, Alvarez Nicolas J., Matsumiya Yumi, Rasmussen Henrik K., Watanabe Hiroshi, Hassager Ole, Extensional Rheology of Entangled Polystyrene Solutions Suggests Importance of Nematic Interactions, 10.1021/mz400319v
  13. Naguib Hani E., Park Chul B., Panzer U., Reichelt Norbert, Strategies for achieving ultra low-density polypropylene foams, 10.1002/pen.11045
  14. Stange Jens, Münstedt Helmut, Rheological properties and foaming behavior of polypropylenes with different molecular structures, 10.1122/1.2351880
  15. Bhattacharjee P. K., Oberhauser J. P., McKinley G. H., Leal L. G., Sridhar T., Extensional Rheometry of Entangled Solutions, 10.1021/ma0118623
  16. Bhattacharjee P. K., Nguyen D. A., McKinley G. H., Sridhar T., Extensional stress growth and stress relaxation in entangled polymer solutions, 10.1122/1.1530625
  17. Gupta Rahul K., Nguyen D. A., Sridhar T., Extensional viscosity of dilute polystyrene solutions: Effect of concentration and molecular weight, 10.1063/1.870383
  18. Doyle Patrick S., Shaqfeh Eric S.G., McKinley Gareth H., Spiegelberg Stephen H., Relaxation of dilute polymer solutions following extensional flow1Dedicated to the memory of Professor Gianni Astarita.1, 10.1016/s0377-0257(97)00113-4
  19. Ligoure Christian, Mora Serge, Fractures in complex fluids: the case of transient networks, 10.1007/s00397-012-0668-0
  20. Zhu Xiangyang, Wang Shi-Qing, Mechanisms for different failure modes in startup uniaxial extension: Tensile (rupture-like) failure and necking, 10.1122/1.4764081
  21. Ferry, Viscoelastic Properties of Polymers (1980)
  22. Lomellini Paolo, Effect of chain length on the network modulus and entanglement, 10.1016/0032-3861(92)90771-n
  23. Larson R. G., Combinatorial Rheology of Branched Polymer Melts, 10.1021/ma000700o
  24. Park Seung Joon, Larson Ronald G., Dilution exponent in the dynamic dilution theory for polymer melts, 10.1122/1.1530156
  25. Auhl Dietmar, Chambon Pierre, McLeish Tom C. B., Read Daniel J., Elongational Flow of Blends of Long and Short Polymers: Effective Stretch Relaxation Time, 10.1103/physrevlett.103.136001
  26. Doi, The Theory of Polymer Dynamics (1986)
  27. Das Chinmay, Inkson Nathanael J., Read Daniel J., Kelmanson Mark A., McLeish Tom C. B., Computational linear rheology of general branch-on-branch polymers, 10.1122/1.2167487
  28. Das Chinmay, Read Daniel J., Auhl Dietmar, Kapnistos Michael, den Doelder Jaap, Vittorias Iakovos, McLeish Tom C. B., Numerical prediction of nonlinear rheology of branched polymer melts, 10.1122/1.4869485
  29. Read D. J., Auhl D., Das C., den Doelder J., Kapnistos M., Vittorias I., McLeish T. C. B., Linking Models of Polymerization and Dynamics to Predict Branched Polymer Structure and Flow, 10.1126/science.1207060
  30. M.E. Shivokhin D. Read R. Kocen C. Bailly N. Hadjichristidis A.E. Likhtman “Understanding the Effect of Constraint Release Environment on the End-to-end Vector Relaxation Time of Linear Chains 2016
  31. Pilyugina Ekaterina, Andreev Marat, Schieber Jay D., Dielectric Relaxation as an Independent Examination of Relaxation Mechanisms in Entangled Polymers Using the Discrete Slip-Link Model, 10.1021/ma202658h
  32. Marrucci G., Relaxation by reptation and tube enlargement: A model for polydisperse polymers, 10.1002/pol.1985.180230115
  33. Likhtman Alexei E., Graham Richard S., Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation, 10.1016/s0377-0257(03)00114-9
  34. McKinley Gareth H., Hassager Ole, The Considère condition and rapid stretching of linear and branched polymer melts, 10.1122/1.551034
  35. Considère, ‘‘Memoire sur l'emploi du fer et de l'acier dans les constructions, 574 (1885)
  36. Malkin A. Ya., Petrie C. J. S., Some conditions for rupture of polymer liquids in extension, 10.1122/1.550881