User menu

Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations

Bibliographic reference Michel, Denis ; Ruelle, Philippe. Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations. In: Physical Chemistry Chemical Physics, Vol. 19, no.7, p. 5273-5284 (2017)
Permanent URL http://hdl.handle.net/2078.1/182446
  1. Pham Chi L.L., Kwan Ann H., Sunde Margaret, Functional amyloid: widespread in Nature, diverse in purpose, 10.1042/bse0560207
  2. Cohen Samuel I. A., Vendruscolo Michele, Dobson Christopher M., Knowles Tuomas P. J., Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations, 10.1063/1.3608918
  3. Gillam, J. Phys.: Condens. Matter, 25, 373101 (2013)
  4. Michaels Thomas C. T., Cohen Samuel I. A., Vendruscolo Michele, Dobson Christopher M., Knowles Tuomas P. J., Hamiltonian Dynamics of Protein Filament Formation, 10.1103/physrevlett.116.038101
  5. Kumar, Int. J. Biol. Macromol., S0141–8130, 30590 (2016)
  6. Frieden Carl, Protein aggregation processes: In search of the mechanism, 10.1110/ps.073164107
  7. Michel D., Modeling generic aspects of ideal fibril formation, 10.1063/1.4940149
  8. Wegner Albrecht, Engel Juergen, Kinetics of the cooperative association of actin to actin filament, 10.1016/0301-4622(75)80013-5
  9. J. Howard , Mechanics of motor Proteins and the cytoskeleton, Sinauer Press, Sunderland, MA, 2001
  10. Shchekin Alexander K., Babintsev Ilya A., Adzhemyan Loran Ts., Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates, 10.1063/1.4966233
  11. Arosio Paolo, Knowles Tuomas P. J., Linse Sara, On the lag phase in amyloid fibril formation, 10.1039/c4cp05563b
  12. Lewis G. N., A New Principle of Equilibrium, 10.1073/pnas.11.3.179
  13. Hong Liu, Yong Wen-An, Simple Moment-Closure Model for the Self-Assembly of Breakable Amyloid Filaments, 10.1016/j.bpj.2012.12.039
  14. DeLisi C., Wiegel F. W., Effect of nonspecific forces and finite receptor number on rate constants of ligand--cell bound-receptor interactions., 10.1073/pnas.78.9.5569
  15. Shoup D., Szabo A., Role of diffusion in ligand binding to macromolecules and cell-bound receptors, 10.1016/s0006-3495(82)84455-x
  16. von Smoluchowski, Phys. Z., 17, 557 (1916)
  17. Kathmann Shawn M., Schenter Gregory K., Garrett Bruce C., Dynamical nucleation theory: Calculation of condensation rate constants for small water clusters, 10.1063/1.479230
  18. Stillinger Frank H., Rigorous Basis of the Frenkel‐Band Theory of Association Equilibrium, 10.1063/1.1776907
  19. Harris Sarah A., Ford Ian J., A dynamical definition of quasibound molecular clusters, 10.1063/1.1568336
  20. Gosal Walraj S., Morten Isobel J., Hewitt Eric W., Smith D. Alastair, Thomson Neil H., Radford Sheena E., Competing Pathways Determine Fibril Morphology in the Self-assembly of β2-Microglobulin into Amyloid, 10.1016/j.jmb.2005.06.040
  21. Miti Tatiana, Mulaj Mentor, Schmit Jeremy D., Muschol Martin, Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases, 10.1021/bm501521r
  22. Michel Denis, Boutin Benjamin, Ruelle Philippe, The accuracy of biochemical interactions is ensured by endothermic stepwise kinetics, 10.1016/j.pbiomolbio.2016.02.001
  23. Farkas, Z. Phys. Chem., 125, 236 (1927)
  24. Wegscheider Rud, �ber simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme, 10.1007/bf01517735
  25. See for instance the NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/25.12, Release 1.0.10, of 2015-08-07
  26. W. Feller , An introduction to probability theory and its applications, Wiley, 2nd edn, 1971, vol. 2
  27. Cohen Samuel I.A., Vendruscolo Michele, Dobson Christopher M., Knowles Tuomas P.J., From Macroscopic Measurements to Microscopic Mechanisms of Protein Aggregation, 10.1016/j.jmb.2012.02.031
  28. Michaels Thomas C. T., Lazell Hamish W., Arosio Paolo, Knowles Tuomas P. J., Dynamics of protein aggregation and oligomer formation governed by secondary nucleation, 10.1063/1.4927655
  29. Ciryam Prajwal, Kundra Rishika, Morimoto Richard I., Dobson Christopher M., Vendruscolo Michele, Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases, 10.1016/j.tips.2014.12.004
  30. Heneghan A. F., Wilson P. W., Wang Genmiao, Haymet A. D. J., Liquid-to-crystal nucleation: Automated lag-time apparatus to study supercooled liquids, 10.1063/1.1407290
  31. Heneghan A. F., Wilson P. W., Haymet A. D. J., Heterogeneous nucleation of supercooled water, and the effect of an added catalyst, 10.1073/pnas.152253399
  32. Michel Denis, Ruelle Philippe, Seven competing ways to recover the Michaelis–Menten equation reveal the alternative approaches to steady state modeling, 10.1007/s10910-013-0237-5
  33. Truesdell C., On a Function Which Occurs in the Theory of the Structure of Polymers, 10.2307/1969153