User menu

Modeling in MiningZinc

Bibliographic reference Dries, Anton ; Guns, Tias ; Nijssen, Siegfried ; Babaki, Behrouz ; Le Van, Thanh ; et. al. Modeling in MiningZinc. In: Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O'Sullivan, Dino Pedreschi, Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, Springer  2016, p. 257-281
Permanent URL http://hdl.handle.net/2078.1/182011
  1. Agrawal Rakesh, Imieliński Tomasz, Swami Arun, Mining association rules between sets of items in large databases, 10.1145/170035.170072
  2. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press, Boca Raton (2008)
  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
  4. Blockeel Hendrik, Calders Toon, Fromont Élisa, Goethals Bart, Prado Adriana, Robardet Céline, An inductive database system based on virtual mining views, 10.1007/s10618-011-0229-7
  5. Boulicaut, J.F., Dzeroski, S. (eds.): Proceedings of the Second International Workshop on Inductive Databases, 22 September, Cavtat-Dubrovnik, Croatia. Rudjer Boskovic Institute, Zagreb (2003)
  6. Constraint-Based Mining and Inductive Databases, ISBN:9783540313311, 10.1007/11615576
  7. Coquery, E., Jabbour, S., Sais, L., Salhi, Y., et al.: A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence. In: European Conference on Artificial Intelligence (ECAI), vol. 242, pp. 258–263 (2012)
  8. Darwiche Adnan, A differential approach to inference in Bayesian networks, 10.1145/765568.765570
  9. De Raedt, L., Paramonov, S., van Leeuwen, M.: Relational decomposition using answer set programming. In: Online Preprints 23rd International Conference on Inductive Logic Programming, International Conference on Inductive Logic Programming, Rio de Janeiro, 28–30 August 2013, August 2013. https://lirias.kuleuven.be/handle/123456789/439287
  10. Denecker Marc, Kakas Antonis, Abduction in Logic Programming, Computational Logic: Logic Programming and Beyond (2002) ISBN:9783540439592 p.402-436, 10.1007/3-540-45628-7_16
  11. Dao Thi-Bich-Hanh, Duong Khanh-Chuong, Vrain Christel, A Declarative Framework for Constrained Clustering, Machine Learning and Knowledge Discovery in Databases (2013) ISBN:9783642409936 p.419-434, 10.1007/978-3-642-40994-3_27
  12. Frisch Alan M., Harvey Warwick, Jefferson Chris, Martínez-Hernández Bernadette, Miguel Ian, Essence: A constraint language for specifying combinatorial problems, 10.1007/s10601-008-9047-y
  13. Gilpin Sean, Davidson Ian, Incorporating SAT solvers into hierarchical clustering algorithms : an efficient and flexible approach, 10.1145/2020408.2020585
  14. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling language for constraint-based mining. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1365–1372. AAAI Press, August 2013
  15. Guns, T., Dries, A., Tack, G., Nijssen, S., Raedt, L.D.: Miningzinc: a language for constraint-based mining. In: International Joint Conference on Artificial Intelligence (2013)
  16. Guns Tias, Nijssen Siegfried, De Raedt Luc, Itemset mining: A constraint programming perspective, 10.1016/j.artint.2011.05.002
  17. Guns T., Nijssen S., De Raedt L., k-Pattern Set Mining under Constraints, 10.1109/tkde.2011.204
  18. Hall Mark, Frank Eibe, Holmes Geoffrey, Pfahringer Bernhard, Reutemann Peter, Witten Ian H., The WEKA data mining software : an update, 10.1145/1656274.1656278
  19. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Burlington (2000)
  20. Imieliński Tomasz, Virmani Aashu, 10.1023/a:1009816913055
  21. Jain A. K., Murty M. N., Flynn P. J., Data clustering: a review, 10.1145/331499.331504
  22. Järvisalo Matti, Itemset Mining as a Challenge Application for Answer Set Enumeration, Logic Programming and Nonmonotonic Reasoning (2011) ISBN:9783642208942 p.304-310, 10.1007/978-3-642-20895-9_35
  23. Le Van Thanh, van Leeuwen Matthijs, Nijssen Siegfried, Fierro Ana Carolina, Marchal Kathleen, De Raedt Luc, Ranked Tiling, Machine Learning and Knowledge Discovery in Databases (2014) ISBN:9783662448502 p.98-113, 10.1007/978-3-662-44851-9_7
  24. Mannila, H.: Inductive databases and condensed representations for data mining. In: ILPS, pp. 21–30 (1997)
  25. Marriott Kim, Nethercote Nicholas, Rafeh Reza, Stuckey Peter J., Garcia de la Banda Maria, Wallace Mark, The Design of the Zinc Modelling Language, 10.1007/s10601-008-9041-4
  26. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules. In: VLDB, pp. 122–133 (1996)
  27. Métivier Jean-Philippe, Boizumault Patrice, Crémilleux Bruno, Khiari Mehdi, Loudni Samir, Constrained Clustering Using SAT, Advances in Intelligent Data Analysis XI (2012) ISBN:9783642341557 p.207-218, 10.1007/978-3-642-34156-4_20
  28. Métivier, J.P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint language for declarative pattern discovery. In: SAC 2012, pp. 119–125. ACM (2012). http://doi.acm.org/10.1145/2245276.2245302
  29. Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H., The Discrete Basis Problem, 10.1109/tkde.2008.53
  30. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill, New York (1997)
  31. Negrevergne Benjamin, Guns Tias, Constraint-Based Sequence Mining Using Constraint Programming, Integration of AI and OR Techniques in Constraint Programming (2015) ISBN:9783319180076 p.288-305, 10.1007/978-3-319-18008-3_20
  32. Nethercote Nicholas, Stuckey Peter J., Becket Ralph, Brand Sebastian, Duck Gregory J., Tack Guido, MiniZinc: Towards a Standard CP Modelling Language, Principles and Practice of Constraint Programming – CP 2007 ISBN:9783540749691 p.529-543, 10.1007/978-3-540-74970-7_38
  33. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
  34. Stuckey Peter J., Tack Guido, MiniZinc with Functions, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (2013) ISBN:9783642381706 p.268-283, 10.1007/978-3-642-38171-3_18
  35. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)
  36. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)
  37. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)
  38. Zou Hui, Hastie Trevor, Regularization and variable selection via the elastic net, 10.1111/j.1467-9868.2005.00503.x