User menu

Quantum size effects in the atomistic structure of armchair nanoribbons

Bibliographic reference Dasgupta, A. ; Bera, S. ; Evers, F. ; van Setten, Michiel. Quantum size effects in the atomistic structure of armchair nanoribbons. In: Physical review. B, Condensed matter and materials physics, Vol. 85, no.12, p. 125433 (2012)
Permanent URL http://hdl.handle.net/2078.1/181090
  1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless Dirac fermions in graphene, 10.1038/nature04233
  2. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene, 10.1103/revmodphys.81.109
  3. Geim A. K., Novoselov K. S., The rise of graphene, 10.1038/nmat1849
  4. Han Melinda Y., Özyilmaz Barbaros, Zhang Yuanbo, Kim Philip, Energy Band-Gap Engineering of Graphene Nanoribbons, 10.1103/physrevlett.98.206805
  5. Wakabayashi Katsunori, Fujita Mitsutaka, Ajiki Hiroshi, Sigrist Manfred, Electronic and magnetic properties of nanographite ribbons, 10.1103/physrevb.59.8271
  6. Ritter Kyle A., Lyding Joseph W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, 10.1038/nmat2378
  7. Jiao Liying, Zhang Li, Wang Xinran, Diankov Georgi, Dai Hongjie, Narrow graphene nanoribbons from carbon nanotubes, 10.1038/nature07919
  8. Dössel Lukas, Gherghel Lileta, Feng Xinliang, Müllen Klaus, Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free, 10.1002/anie.201006593
  9. Jia Xiaoting, Campos-Delgado Jessica, Terrones Mauricio, Meunier Vincent, Dresselhaus Mildred S., Graphene edges: a review of their fabrication and characterization, 10.1039/c0nr00600a
  10. Dubois S. M.-M., Zanolli Z., Declerck X., Charlier J.-C., Electronic properties and quantum transport in Graphene-based nanostructures, 10.1140/epjb/e2009-00327-8
  11. Wassmann T., Seitsonen A. P., Saitta A. M., Lazzeri M., Mauri F., The thermodynamic stability and simulated STM images of graphene nanoribbons : Thermodynamic stability and simulated STM images of nanoribbons, 10.1002/pssb.200982324
  12. Kosynkin Dmitry V., Higginbotham Amanda L., Sinitskii Alexander, Lomeda Jay R., Dimiev Ayrat, Price B. Katherine, Tour James M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, 10.1038/nature07872
  13. Wang Xinran, Dai Hongjie, Etching and narrowing of graphene from the edges, 10.1038/nchem.719
  14. Cai Jinming, Ruffieux Pascal, Jaafar Rached, Bieri Marco, Braun Thomas, Blankenburg Stephan, Muoth Matthias, Seitsonen Ari P., Saleh Moussa, Feng Xinliang, Müllen Klaus, Fasel Roman, Atomically precise bottom-up fabrication of graphene nanoribbons, 10.1038/nature09211
  15. Gosálbez-Martínez D., Palacios J. J., Fernández-Rossier J., Spin-orbit interaction in curved graphene ribbons, 10.1103/physrevb.83.115436
  16. Vanin M., Gath J., Thygesen K. S., Jacobsen K. W., First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties, 10.1103/physrevb.82.195411
  17. Yang Yan, Zhuang Yuan, He Yunhua, Bai Bo, Wang Xun, Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions, 10.1007/s12274-010-0019-3
  18. Hämäläinen Sampsa K., Sun Zhixiang, Boneschanscher Mark P., Uppstu Andreas, Ijäs Mari, Harju Ari, Vanmaekelbergh Daniël, Liljeroth Peter, Quantum-Confined Electronic States in Atomically Well-Defined Graphene Nanostructures, 10.1103/physrevlett.107.236803
  19. Bera S., Arnold A., Evers F., Narayanan R., Wölfle P., Elastic properties of graphene flakes: Boundary effects and lattice vibrations, 10.1103/physrevb.82.195445
  20. Zarea Mahdi, Sandler Nancy, Graphene zigzag ribbons, square lattice models and quantum spin chains, 10.1088/1367-2630/11/9/095014
  21. Wassmann Tobias, Seitsonen Ari P., Saitta A. Marco, Lazzeri Michele, Mauri Francesco, Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons, 10.1103/physrevlett.101.096402
  22. Palacios J J, Fernández-Rossier J, Brey L, Fertig H A, Electronic and magnetic structure of graphene nanoribbons, 10.1088/0268-1242/25/3/033003
  23. Blase X., Adessi C., Biel B., Lopez-Bezanilla A., Fernández-Serra M.-V., Margine E. R., Triozon F., Roche S., Conductance of functionalized nanotubes, graphene and nanowires: from ab initio to mesoscopic physics, 10.1002/pssb.201000135
  24. Yu S.S., Wen Q.B., Zheng W.T., Jiang Q., Electronic properties of graphene nanoribbons with armchair-shaped edges, 10.1080/08927020801958795
  25. Pisani L., Chan J. A., Montanari B., Harrison N. M., Electronic structure and magnetic properties of graphitic ribbons, 10.1103/physrevb.75.064418
  26. Barone Verónica, Hod Oded, Scuseria Gustavo E., Electronic Structure and Stability of Semiconducting Graphene Nanoribbons, 10.1021/nl0617033
  27. Rozhkov A. V., Savel’ev S., Nori Franco, Electronic properties of armchair graphene nanoribbons, 10.1103/physrevb.79.125420
  28. Gunlycke D., White C. T., Tight-binding energy dispersions of armchair-edge graphene nanostrips, 10.1103/physrevb.77.115116
  29. Yang Li, Park Cheol-Hwan, Son Young-Woo, Cohen Marvin L., Louie Steven G., Quasiparticle Energies and Band Gaps in Graphene Nanoribbons, 10.1103/physrevlett.99.186801
  30. Son Young-Woo, Cohen Marvin L., Louie Steven G., Energy Gaps in Graphene Nanoribbons, 10.1103/physrevlett.97.216803
  31. Chen Zhihong, Lin Yu-Ming, Rooks Michael J., Avouris Phaedon, Graphene nano-ribbon electronics, 10.1016/j.physe.2007.06.020
  32. Huang Bing, Liu Miao, Su Ninghai, Wu Jian, Duan Wenhui, Gu Bing-lin, Liu Feng, Quantum Manifestations of Graphene Edge Stress and Edge Instability: A First-Principles Study, 10.1103/physrevlett.102.166404
  33. Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, 10.1103/physrevb.59.1758
  34. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  35. Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
  36. Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
  37. Hafner Jürgen, Ab-initiosimulations of materials using VASP: Density-functional theory and beyond, 10.1002/jcc.21057
  38. Perdew John P., Chevary J. A., Vosko S. H., Jackson Koblar A., Pederson Mark R., Singh D. J., Fiolhais Carlos, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, 10.1103/physrevb.46.6671
  39. R. C. Weast, CRC Handbook of Chemistry and Physics (2009)
  40. Samsonidze Ge. G., Saito R., Kobayashi N., Grüneis A., Jiang J., Jorio A., Chou S. G., Dresselhaus G., Dresselhaus M. S., Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, 10.1063/1.1829160
  41. Brey L., Fertig H. A., Electronic states of graphene nanoribbons studied with the Dirac equation, 10.1103/physrevb.73.235411
  42. Wang Z. F., Li Qunxiang, Zheng Huaixiu, Ren Hao, Su Haibin, Shi Q. W., Chen Jie, Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study, 10.1103/physrevb.75.113406
  43. Zhang X. W., Yang G. W., Novel Band Structures and Transport Properties from Graphene Nanoribbons with Armchair Edges, 10.1021/jp810483r