User menu

Lifting, Superadditivity, Mixed Integer Rounding and Single Node Flow Sets Revisited

Bibliographic reference Wolsey, Laurence ; Louveaux, Quentin. Lifting, Superadditivity, Mixed Integer Rounding and Single Node Flow Sets Revisited. In: Annals of Operations Research, Vol. 153, no. 1, p. 47-77 (Septembre 2003)
Permanent URL http://hdl.handle.net/2078/18085
  1. Atamtürk, A. (2001). Flow pack facets of the single node fixed-charge flow polytope. Operations Research Letters, 29, 107–114.
  2. Atamtürk, A. (2003). On the facets of the mixed-integer knapsack polyhedron. Mathematical Programming, 98, 145–175.
  3. Atamtürk, A., & Munoz (2004). A study of the lot-sizing polytope. Mathematical Programming, 99, 443–465.
  4. Atamtürk, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2001). Valid inequalities for problems with additive variable upper bounds. Mathematical Programming, 91, 145–162.
  5. Balas, E. (1975). A time indexed formulation of non-preemptive single machine scheduling problems. Mathematical Programming, 8, 146–164.
  6. Ceria, S., Cordier, C., Marchand, H., & Wolsey, L. A. (1998). Cutting planes for integer programs with general integer variables. Mathematical Programming, 81, 201–214.
  7. Crowder, H., Johnson, E. L., & Padberg, M. W. (1963). Solving large scale zero-one linear programming problems. Operations Research, 31, 803–834.
  8. Goemans, M. X. (1989). Valid inequalities and separation for mixed 0–1 constraints with variable upper bounds. Operations Research Letters, 8, 315–322.
  9. Gomory, R. E. (1960). An algorithm for the mixed integer problem. Research report RM-2597, The Rand Corporation.
  10. Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1998). Lifted flow cover inequalities for 0–1 integer programs: computation. INFORMS J. of Computing, 10, 427–437.
  11. Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1999). Lifted flow cover inequalities for mixed 0–1 integer programs. Mathematical Programming, 85, 439–468.
  12. Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (2000). Sequence independent lifting in mixed integer programing. Journal of Combinatorial Optimization, 4, 109–129.
  13. Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0–1 polytopes. Mathematical Programming, 8, 179–206.
  14. Jeroslow, R. G. (1979). An introduction to the theory of cutting planes. Annals of Discrete Mathematics, 5, 71–95.
  15. Johnson, E. L. (1973). Cyclic groups, cutting planes and shortest paths. In T. C. Hu, S. Robinson (Eds.), Mathematical Programming (pp. 185–211). New York: Academic.
  16. Louveaux, Q., & Wolsey, L. A. (2003). Lifting, superadditivity, mixed integer rounding and single node flow sets revisited. 4OR, 1, 173–208.
  17. Marchand, H., & Wolsey, L. A. (1999). The 0–1 knapsack problem with a single continuous variable. Mathematical Programming, 85, 15–33.
  18. Marchand, H., & Wolsey, L. A. (2001). Aggregation and mixed integer rounding to solve MIPS. Operations Research, 49, 363–371.
  19. Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003a). A multi-item production planning model with setup times: algorithms, reformulations, and polyhedral characterizations for a special case. Mathematical Programming B, 95, 71–90.
  20. Miller, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003b). On the polyhedral structure of a multi-item production planning model with setup times. Mathematical Programming B, 94, 375–406.
  21. Nemhauser George, Wolsey Laurence, Integer and Combinatorial Optimization : Nemhauser/Integer and Combinatorial Optimization, ISBN:9781118627372, 10.1002/9781118627372
  22. Nemhauser, G. L., & Wolsey, L. A. (1990). A recursive procedure for generating all cuts for 0–1 mixed integer programs. Mathematical Programming, 46, 379–390.
  23. Oosten, M. (1996). A polyhedral approach to grouping problems. Ph.D. thesis, University of Maastricht
  24. Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Programming, 5, 199–215.
  25. Padberg, M. W., Van Roy, T. J., & Wolsey, L. A. (1985). Valid inequalities for fixed charge problems. Mathematical Programming, 33, 842–861.
  26. Richard Jean-Philippe P., de Farias Ismael R., Nemhauser George L., Lifted Inequalities for 0-1 Mixed Integer Programming: Basic Theory and Algorithms, Integer Programming and Combinatorial Optimization (2002) ISBN:9783540436768 p.161-175, 10.1007/3-540-47867-1_12
  27. Richard, J.-P. P., de Farias, I. R., & Nemhauser, G. L. (2003). Lifted inequalities for 0–1 mixed integer programming: superlinear lifting. Mathematical Programming, 98, 115–143.
  28. Stallaert, J. I. A. (1997). The complementary class of generalized flow cover inequalities. Discrete Applied Mathematics, 77, 73–80.
  29. Van Roy, T. J., & Wolsey, L. A. (1986). Valid inequalities for mixed 0–1 programs. Discrete Applied Mathematics, 14, 199–213.
  30. Van Roy, T. J., & Wolsey, L. A. (1987). Solving mixed 0–1 programs by automatic reformulation. Operations Research, 35, 45–57.
  31. Wolsey, L. A. (1975). Faces for linear inequalities in 0–1 variables. Mathematical Programming, 8, 165–178.
  32. Wolsey, L. A. (1976). Facets and strong valid inequalities for integer programs. Operations Research, 24, 367–372.
  33. Wolsey, L. A. (1977). Valid inequalities and superadditivity for 0–1 integer programs. Mathematics of Operations Research, 2, 66–77.
  34. Wolsey, L. A. (1989). Submodularity and valid inequalities in capacitated fixed charge networks. Operations Research Letters, 8, 119–124.
  35. Wolsey, L. A. (1990). Valid inequalities for mixed integer programs with generalised upper bound constraints. Discrete Applied Mathematics, 25, 251–261.