User menu

Approximate extended formulations

Bibliographic reference Wolsey, Laurence ; Van Vyve, Mathieu. Approximate extended formulations. In: Mathematical Programming, Vol. 105, no. 2-3, p. 501-522 (Février 2006)
Permanent URL http://hdl.handle.net/2078/18078
  1. Balas E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)
  2. Barany Imre, Roy Tony, Wolsey Laurence A., Uncapacitated lot-sizing: The convex hull of solutions, Mathematical Programming Studies (1984) ISBN:9783642009143 p.32-43, 10.1007/bfb0121006
  3. Belvaux G., Wolsey L.A.: bc-prod: A specialized branch-and-cut system for lot-sizing problems. Management Science 46 (5), 724–738 (2000)
  4. Eppen G.D., Martin R.K.: Solving multi-item lot-sizing problems using variable definition. Operations Research 35, 832–848 (1987)
  5. Haus U-U., Köppe M., Weismantel R.: A primal all-integer algorithm based on irreducible solutions. Mathematical Programming 96, 205–246 (2003)
  6. Jans R., Degraeve Z.: Improved lower bounds for the capacitated lot sizing problem with set up times. Operations Research Letters 32, 185–195 (2004)
  7. Krarup J., Bilde O.: Plant location, set covering and economic lot sizes: an O(mn) algorithm for structured problems. In: L. Collatz et al. (eds.), Optimierung bei Graphentheoretischen und Ganzzahligen Probleme, Birkhauser Verlag, Basel pp 155–180 1977
  8. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on Optimization 1, 166–190 (1991)
  9. Miller A.J., Nemhauser G.L., Savelsbergh M.W.P.: Solving multi-item capacitated lot-sizing problems with setup times by branch-and-cut.CORE DP 2000/39, CORE, Université catholique de Louvain, 2000
  10. Miller A.J., Wolsey L.A.: Tight MIP formulations for multi-item discrete lot-sizing problems. Operations Research 51, 557–565 (2003)
  11. Miller C. E., Tucker A. W., Zemlin R. A., Integer Programming Formulation of Traveling Salesman Problems, 10.1145/321043.321046
  12. Padberg M., Sung T.-Y.: An analytical comparison of different formulations of the travelling salesman problem. Mathematical Programming 52, 315–357 (1991)
  13. Pochet Y., Wolsey L.A. Polyhedra for lot-sizing with Wagner-Whitin costs. Mathematical Programming 67, 297–323 (1994)
  14. Rardin R.L., Choe U.: Tighter relaxations of fixed charge network flow problems. report J-79-18, ISYE, Georgia Institute of Technolgy, 1979
  15. Reinelt G.: TSPLIB: A library of sample instances for the TSP. http://www.iwr.uni-heidelberg.de/groups/ comopt/software/TSPLIB95/
  16. Sherali H., Adams W.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal of Discrete Mathematics 3, 411 – 430 (1990)
  17. Stadtler H.: Reformulations of the shortest-route model for dynamic multi-item multi-level capacitated lot-sizing. OR Spektrum 19, 87–96 (1997)
  18. Trigeiro W.W., Thomas L.J., McClain J.O.: Capacitated lot sizing with setup times. Management Science 35 (3), 353–366 (1989)
  19. Van Vyve M.: Formulations for the single item lot-sizing problem with backlogging and constant capacity. To appear in Mathematical Programming
  20. Van Vyve M.: A solution approach to production planning problems based on compact formulations for single-item lot-sizing models, Ph.D. thesis, Faculté des Sciences Appliquées, Université catholique de Louvain, 2003 http://www.core.ucl.ac.be/welcome/researchers/webpage%20Folder/academic. htm
  21. Wolsey L.A.: Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Science 48, 1587–1602 (2002)
  22. Wolsey L.A.: Strong formulations for mixed integer programs: valid inequalities and extended formulations. Mathematical Programming B 97, 423–447 2003