User menu

On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions

Bibliographic reference de Klerk, Etienne ; Glineur, François ; Taylor, Adrien. On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions. In: Optimization Letters, Vol. 11, no. 7, p. 1185-1199 (2017)
Permanent URL http://hdl.handle.net/2078.1/180605
  1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Massachusetts (1999)
  2. Drori Yoel, Teboulle Marc, Performance of first-order methods for smooth convex minimization: a novel approach, 10.1007/s10107-013-0653-0
  3. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, Berlin (2008)
  4. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L., Kurach, K., Martens, J.: Adding gradient noise improves learning for very deep networks (2015). arXiv:1511.06807v1
  5. Nemirovski, A.: Optimization II: numerical methods for nonlinear continuous optimization. In: Lecture Notes (1999). http://www2.isye.gatech.edu/~nemirovs/Lect_OptII.pdf
  6. Nemirovski, A., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)
  7. Nesterov Yurii, Introductory Lectures on Convex Optimization, ISBN:9781461346913, 10.1007/978-1-4419-8853-9
  8. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media, Berlin (2006)
  9. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)
  10. Taylor, A.B., Hendrickx, J.M., Glineur, F.: Exact worst-case performance of first-order methods for composite convex optimization (2015). arXiv:1512.07516
  11. Taylor Adrien B., Hendrickx Julien M., Glineur François, Smooth strongly convex interpolation and exact worst-case performance of first-order methods, 10.1007/s10107-016-1009-3