User menu

Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia.

Bibliographic reference García, Araceli Nora ; Ayub, Nicolás Daniel ; Fox, Ana Romina ; Gómez, María Cristina ; Diéguez, María José ; et. al. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia.. In: BMC Plant Biology, Vol. 14, no.1, p. 248 (2014)
Permanent URL http://hdl.handle.net/2078.1/180426
  1. Volenec J.J., Cunningham S.M., Haagenson D.M., Berg W.K., Joern B.C., Wiersma D.W., Physiological genetics of alfalfa improvement: past failures, future prospects, 10.1016/s0378-4290(02)00020-5
  2. Lopez-Solanilla E, Garcia-Olmedo F, Rodriguez-Palenzuela P: Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell. 1998, 10 (6): 917-924.
  3. Segura Ana, Moreno Manuel, Madueño Francisco, Molina Antonio, García-Olmedo Francisco, Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens, 10.1094/mpmi.1999.12.1.16
  4. Berrocal-Lobo M., Segura A., Moreno M., Lopez G., Garcia-Olmedo F., Molina A., Snakin-2, an Antimicrobial Peptide from Potato Whose Gene Is Locally Induced by Wounding and Responds to Pathogen Infection, 10.1104/pp.010685
  5. Kovalskaya Natalia, Hammond Rosemarie W., Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins, 10.1016/j.pep.2008.08.013
  6. Rong Wei, Qi Lin, Wang Jingfen, Du Lipu, Xu Huijun, Wang Aiyun, Zhang Zengyan, Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat, 10.1007/s10142-013-0332-5
  7. Guzmán-Rodríguez Jaquelina J., Ibarra-Laclette Enrique, Herrera-Estrella Luis, Ochoa-Zarzosa Alejandra, Suárez-Rodríguez Luis María, Rodríguez-Zapata Luis C., Salgado-Garciglia Rafael, Jimenez-Moraila Beatriz, López-Meza Joel E., López-Gómez Rodolfo, Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin, 10.1016/j.plaphy.2013.05.045
  8. Meiyalaghan Sathiyamoorthy, Thomson Susan J, Fiers Mark WEJ, Barrell Philippa J, Latimer Julie M, Mohan Sara, Jones E Eirian, Conner Anthony J, Jacobs Jeanne ME, Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status, 10.1186/1471-2164-15-2
  9. Mohan Sara, Meiyalaghan Sathiyamoorthy, Latimer Julie M., Gatehouse Michelle L., Monaghan Katrina S., Vanga Bhanupratap R., Pitman Andrew R., Jones E. Eirian, Conner Anthony J., Jacobs Jeanne M. E., GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato, 10.1007/s00122-013-2250-2
  10. ALMASIA NATALIA I., BAZZINI ARIEL A., HOPP H. ESTEBAN, VAZQUEZ-ROVERE CECILIA, Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants, 10.1111/j.1364-3703.2008.00469.x
  11. Balaji Vasudevan, Smart Christine D., Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum), 10.1007/s11248-011-9506-x
  12. Kovalskaya Natalia, Antibacterial and Antifungal Activity of a Snakin-Defensin Hybrid Protein Expressed in Tobacco and Potato Plants, 10.2174/1874294701105010029
  13. Balaji Vasudevan, Sessa Guido, Smart Christine D., Silencing of Host Basal Defense Response-Related Gene Expression Increases Susceptibility ofNicotiana benthamianatoClavibacter michiganensissubsp.michiganensis, 10.1094/phyto-05-10-0132
  14. Nahirnak V., Almasia N. I., Fernandez P. V., Hopp H. E., Estevez J. M., Carrari F., Vazquez-Rovere C., Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition, 10.1104/pp.111.186544
  15. Nahirñak Vanesa, Almasia Natalia Inés, Hopp Horacio Esteban, Vazquez-Rovere Cecilia, Snakin/GASA proteins : Involvement in hormone crosstalk and redox homeostasis, 10.4161/psb.20813
  16. Porto William F., Franco Octavio L., Theoretical structural insights into the snakin/GASA family, 10.1016/j.peptides.2013.03.014
  17. Howell C. R., Control ofRhizoctonia solanion Cotton Seedlings withPseudomonas fluorescensand With an Antibiotic Produced by the Bacterium, 10.1094/phyto-69-480
  18. Carelli M., Gnocchi S., Fancelli S., Mengoni A., Paffetti D., Scotti C., Bazzicalupo M., Genetic Diversity and Dynamics of Sinorhizobium meliloti Populations Nodulating Different Alfalfa Cultivars in Italian Soils, 10.1128/aem.66.11.4785-4789.2000
  19. Selbitschka W., Keller M., Miethling-Graff R., Dresing U., Schwieger F., Krahn I., Homann I., Dammann-Kalinowski T., Pühler A., Tebbe C. C., Long-Term Field Release of Bioluminescent Sinorhizobium meliloti Strains to Assess the Influence of a recA Mutation on the Strains' Survival, 10.1007/s00248-006-9056-6
  20. Reeve Wayne, Chain Patrick, O’Hara Graham, Ardley Julie, Nandesena Kemanthi, Bräu Lambert, Tiwari Ravi, Malfatti Stephanie, Kiss Hajnalka, Lapidus Alla, Copeland Alex, Nolan Matt, Land Miriam, Hauser Loren, Chang Yun-Juan, Ivanova Natalia, Mavromatis Konstantinos, Markowitz Victor, Kyrpides Nikos, Gollagher Margaret, Yates Ron, Dilworth Michael, Howieson John, Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419, 10.4056/sigs.43526
  21. KEYSER H. H., BOHLOOL B. B., Hu T. S., WEBER D. F., Fast-Growing Rhizobia Isolated from Root Nodules of Soybean, 10.1126/science.215.4540.1631
  22. Eardly BD, Hannaway DB, Bottomley PJ: Characterization of Rhizobia from ineffective Alfalfa nodules: ability to nodulate bean plants [Phaseolus vulgaris (L.) Savi.]. Appl Environ Microbiol. 1985, 50 (6): 1422-1427.
  23. Segovia L., Young J. P. W., Martinez-Romero E., Reclassification of American Rhizobium leguminosarum Biovar Phaseoli Type I Strains as Rhizobium etli sp. nov., 10.1099/00207713-43-2-374
  24. Kaneko T., Complete Genome Structure of the Nitrogen-fixing Symbiotic Bacterium Mesorhizobium loti (Supplement), 10.1093/dnares/7.6.381
  25. Mathis JN, Israel DW, Barbour WM, Jarvis BD, Elkan GH: Analysis of the symbiotic performance of bradyrhizobium japonicum USDA 110 and its derivative I-110 and discovery of a new mannitol-utilizing, nitrogen-fixing USDA 110 derivative. Appl Environ Microbiol. 1986, 52 (1): 75-80.
  26. Hoekema A., Hirsch P. R., Hooykaas P. J. J., Schilperoort R. A., A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid, 10.1038/303179a0
  27. Setten Lorena, Soto Gabriela, Mozzicafreddo Matteo, Fox Ana Romina, Lisi Christian, Cuccioloni Massimiliano, Angeletti Mauro, Pagano Elba, Díaz-Paleo Antonio, Ayub Nicolás Daniel, Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions, 10.1371/journal.pone.0063666
  28. Ayub Nicolás D., Julia Pettinari M., Méndez Beatriz S., López Nancy I., Impaired polyhydroxybutyrate biosynthesis from glucose inPseudomonassp. 14-3 is due to a defective β-ketothiolase gene, 10.1111/j.1574-6968.2006.00446.x
  29. Gleave Andrew P., A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome, 10.1007/bf00028910
  30. Campanella James J, Bitincka Ledion, Smalley John, 10.1186/1471-2105-4-29
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, 10.1093/molbev/msr121
  32. Finn Robert D., Mistry Jaina, Tate John, Coggill Penny, Heger Andreas, Pollington Joanne E., Gavin O. Luke, Gunasekaran Prasad, Ceric Goran, Forslund Kristoffer, Holm Liisa, Sonnhammer Erik L. L., Eddy Sean R., Bateman Alex, The Pfam protein families database, 10.1093/nar/gkp985
  33. Shen Hong-Bin, Chou Kuo-Chen, Signal-3L: A 3-layer approach for predicting signal peptides, 10.1016/j.bbrc.2007.08.140
  34. Möller E.M., Bahnweg G., Sandermann H., Geiger H.H., A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues, 10.1093/nar/20.22.6115
  35. Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI: A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol. 2004, 49 (3): 170-174. 10.1007/s00284-004-4254-2.
  36. Beringer JE: R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974, 84 (1): 188-198. 10.1099/00221287-84-1-188.
  37. Wen-jun Shen, Forde Brian G., Efficient transformation ofAgrobacteriumspp. by high voltage electroporation, 10.1093/nar/17.20.8385
  38. D'Halluin Kathleen, Botterman Johan, De Greef Willy, Engineering of Herbicide-Resistant Alfalfa and Evaluation under Field Conditions, 10.2135/cropsci1990.0011183x003000040020x
  39. Soto Gabriela, Fox Romina, Ayub Nicolas, Alleva Karina, Guaimas Francisco, Erijman Elizabeth Jares, Mazzella Agustina, Amodeo Gabriela, Muschietti Jorge, TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana : TIP5;1 is expressed in pollen mitochondria, 10.1111/j.1365-313x.2010.04395.x
  40. Sanchez L., Pseudomonas fluorescens and Glomus mosseae Trigger DMI3-Dependent Activation of Genes Related to a Signal Transduction Pathway in Roots of Medicago truncatula, 10.1104/pp.105.067603
  41. Perez Di Giorgio Juliana, Soto Gabriela, Alleva Karina, Jozefkowicz Cintia, Amodeo Gabriela, Muschietti Jorge Prometeo, Ayub Nicolás Daniel, Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses, 10.1007/s00232-013-9618-8
  42. Furukawa Tomoyuki, Sakaguchi Norihiro, Shimada Hiroaki, Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles, 10.1266/ggs.81.171
  43. Roxrud I., Lid S. E., Fletcher J. C., Schmidt E. D. L., Opsahl-Sorteberg H.-G., GASA4, One of the 14-Member Arabidopsis GASA Family of Small Polypeptides, Regulates Flowering and Seed Development, 10.1093/pcp/pcm016
  44. Bennici Andrea, Origin and early evolution of land plants : Problems and considerations, 10.4161/cib.1.2.6987
  45. Choi H.-K., A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa, 10.1534/genetics.166.3.1463
  46. Cook Douglas R, Medicago truncatula — a model in the making!, 10.1016/s1369-5266(99)80053-3
  47. McCann Melinda C., Rogan Glennon J., Fitzpatrick Sharie, Trujillo William A., Sorbet Roy, Hartnell Gary F., Riodan Susan G., Nemeth Margaret A., Glyphosate-Tolerant Alfalfa Is Compositionally Equivalent to Conventional Alfalfa (Medicago sativaL.), 10.1021/jf061482m
  48. Masoud Sameer A., Zhu Qun, Lamb Chris, Dixon Richard A., Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogenPhytophthora megasperma f. spmedicaginis, but does not reduce disease severity of chitin-containing fungi, 10.1007/bf01968941
  49. Hipskind John D., Paiva Nancy L., Constitutive Accumulation of a Resveratrol-Glucoside in Transgenic Alfalfa Increases Resistance to Phoma medicaginis, 10.1094/mpmi.2000.13.5.551
  50. Gruenheid Samantha, Moual Hervé, Resistance to antimicrobial peptides in Gram-negative bacteria, 10.1111/j.1574-6968.2012.02528.x
  51. Doyle Jeff J., Phylogenetic Perspectives on the Origins of Nodulation, 10.1094/mpmi-05-11-0114
  52. Jones Kathryn M., Kobayashi Hajime, Davies Bryan W., Taga Michiko E., Walker Graham C., How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model, 10.1038/nrmicro1705