User menu

Choquard equations under confining external potentials

  • Open access
  • PDF
  • 300.12 K
  1. Alves Claudianor O., Souto Marco A. S., Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, 10.1007/s00033-013-0376-3
  2. Bartsch Thomas, Infinitely many solutions of a symmetric Dirichlet problem, 10.1016/0362-546x(93)90151-h
  3. Cao, P., Wang, J., Zou, W.: On the standing waves for nonlinear Hartree equation with confining potential. J. Math. Phys. 53(3), 033702, 27 (2012)
  4. Castro Alfonso, Cossio Jorge, Neuberger John M., A Sign-Changing Solution for a Superlinear Dirichlet Problem, 10.1216/rmjm/1181071858
  5. Cerami G, Solimini S, Struwe M, Some existence results for superlinear elliptic boundary value problems involving critical exponents, 10.1016/0022-1236(86)90094-7
  6. Diósi L., Gravitation and quantum-mechanical localization of macro-objects, 10.1016/0375-9601(84)90397-9
  7. Ghimenti Marco, Moroz Vitaly, Van Schaftingen Jean, Least action nodal solutions for the quadratic Choquard equation, 10.1090/proc/13247
  8. Ghimenti Marco, Van Schaftingen Jean, Nodal solutions for the Choquard equation, 10.1016/j.jfa.2016.04.019
  9. Jones, K.R.W.: Gravitational self-energy as the litmus of reality. Modern Phys. Lett. A (10)(8), 657–667 (1995)
  10. Jones KRW, Newtonian Quantum Gravity, 10.1071/ph951055
  11. Lieb Elliott H., Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation, 10.1002/sapm197757293
  12. Lieb, E., Loss, M.: Analysis, Graduate studies in mathematics, vol 14. American Mathematical Society (1997)
  13. Lions P.L., The Choquard equation and related questions, 10.1016/0362-546x(80)90016-4
  14. Liu, Z., Wang, Z.-Q.: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4(4), 563–574 (2004)
  15. Moroz Irene M, Penrose Roger, Tod Paul, Spherically-symmetric solutions of the Schrödinger-Newton equations, 10.1088/0264-9381/15/9/019
  16. Moroz Vitaly, Van Schaftingen Jean, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, 10.1016/j.jfa.2013.04.007
  17. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005, 12 (2015)
  18. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 145(2), 737–747 (2017)
  19. Pekar, S.: Untersuchungen über die Elektronentheorie der Kristalle. Akademie-Verlag, Berlin (1954)
  20. Penrose Roger, On Gravity's role in Quantum State Reduction, 10.1007/bf02105068
  21. Rabinowitz Paul H., On a class of nonlinear Schr�dinger equations, 10.1007/bf00946631
  22. Stein, E.M., Weiss, G.: Fractional integrals on $$n$$ n -dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)
  23. Szulkin, A., Weth, T.: The method of Nehari manifold, Handbook of nonconvex analysis and applications, pp. 597–632. Int. Press, Somerville, Mass (2010)
  24. Wang Zhengping, Zhou Huan-Song, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $$\mathbb {R}^3$$ R 3, 10.1007/s00526-014-0738-5
  25. Willem, M.: Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser. Mass (1996)
  26. Willem Michel, Functional Analysis, ISBN:9781461470038, 10.1007/978-1-4614-7004-5
  27. Ye Hongyu, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN, 10.1016/j.jmaa.2015.06.012
Bibliographic reference Van Schaftingen, Jean ; Xia, Jiankang. Choquard equations under confining external potentials. In: NoDEA Nonlinear Differential Equations and Applications, Vol. 24, no.1, p. 1–24 (2016)
Permanent URL