User menu

Multi-physics modelling of a compliant humanoid robot

Bibliographic reference Zobova, Alexandra ; Habra, Timothée ; Van der Noot, Nicolas ; Dallali, Houman ; Tsagarakis, Nikolaos G. ; et. al. Multi-physics modelling of a compliant humanoid robot. In: Multibody System Dynamics, Vol. 39, no.1-2, p. 95-114 (2017)
Permanent URL http://hdl.handle.net/2078.1/179152
  1. Tsagarakis, N.G., Morfey, S., Cerda, G.M., Zhibin, L., Caldwell, D.G.: Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control. In: IEEE Robotics and Automation, ICRA, pp. 673–678 (2013)
  2. Tsagarakis, N.G., Morfey, S., Dallali, H., Medrano-Cerda, G.A., Caldwell, D.G.: An asymmetric compliant antagonistic joint design for high performance mobility. In: IEEE Intelligent Robots and Systems, IROS, pp. 5512–5517 (2013)
  3. Docquier N., Poncelet A., Fisette P., ROBOTRAN: a powerful symbolic gnerator of multibody models, 10.5194/ms-4-199-2013
  4. Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Zh., Caldwell, D.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE International Conference on Mechatronics, ICM, pp. 598–603 (2013)
  5. Sherman Michael A., Seth Ajay, Delp Scott L., Simbody: multibody dynamics for biomedical research, 10.1016/j.piutam.2011.04.023
  6. Van der Noot, N., Colasanto, L., Barrea, A., Van den Kieboom, J., Ronsse, R., Ijspeert, A.J.: Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot. In: Intelligent Robots and Systems, IROS, pp. 393–400 (2015). IEEE
  7. Dallali Houman, Mosadeghzad Mohamad, Medrano-Cerda Gustavo, Loc Vo-Gia, Tsagarakis Nikos, Caldwell Darwin, Gesino Michele, Designing a High Performance Humanoid Robot Based on Dynamic Simulation, 10.1109/ems.2013.61
  8. Smith, R.: Open Dynamics Engine (ODE). http://www.ode.org/ . Accessed 21 June 2016
  9. Mistry, M., Schaal, S., Yamane, K.: Inertial parameter estimation of floating base humanoid systems using partial force sensing. In: 9th IEEE-RAS International Conference on Humanoid Robots, pp. 492–497 (2009). IEEE
  10. Sentis, L.: Synthesis and Control of Whole-Body Behaviors in Humanoid Systems. PhD Thesis, Stanford University (2007)
  11. Fitzpatrick Paul, Metta Giorgio, Natale Lorenzo, Towards long-lived robot genes, 10.1016/j.robot.2007.09.014
  12. Habra Timothée, Dallali Houman, Cardellino Alberto, Natale Lorenzo, Tsagarakis Nikolaos, Fisette Paul, Ronsse Renaud, Robotran-YARP Interface: A Framework for Real-Time Controller Developments Based on Multibody Dynamics Simulations, Computational Methods in Applied Sciences (2016) ISBN:9783319306124 p.147-164, 10.1007/978-3-319-30614-8_7
  13. Ivaldi Serena, Peters Jan, Padois Vincent, Nori Francesco, Tools for simulating humanoid robot dynamics: A survey based on user feedback, 10.1109/humanoids.2014.7041462
  14. Boeing, A., Bräunl, Th.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 281–288. ACM, New York (2007)
  15. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IEEE Intelligent Robots and Systems, IROS, pp. 5026–5033 (2012)
  16. Samin Jean-Claude, Fisette Paul, Symbolic Modeling of Multibody Systems, ISBN:9789048164257, 10.1007/978-94-017-0287-4
  17. Bullet Physics library. http://bulletphysics.org/ . Accessed 21 June 2016
  18. Game Physics Pearls, ISBN:9781568814742, 10.1201/b11324
  19. Manual, O.D.E., Wiki: http://ode-wiki.org/wiki/index.php?title=Manual/ . Accessed 21 June 2016
  20. Maxima, a Computer Algebra System. http://maxima.sourceforge.net/ . Accessed 21 June 2016
  21. Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine, Ph., Ecorchard, G.: OpenSYMORO: an open-source software package for symbolic modelling of robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, pp. 1206–1211 (2014). IEEE
  22. MapleSim—High Performance Physical Modeling and Simulation—Technical Computing Software. http://www.maplesoft.com/products/maplesim/index1.aspx . Accessed 21 June 2016
  23. Spong M. W., Modeling and Control of Elastic Joint Robots, 10.1115/1.3143860
  24. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Berlin (2008)
  25. Blau, P.J.: Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton (2009)
  26. Chatterjee A., Ruina A., A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations, 10.1115/1.2791938
  27. Brogliato B, ten Dam AA, Paoli L, Génot F, Abadie M, Numerical simulation of finite dimensional multibody nonsmooth mechanical systems, 10.1115/1.1454112
  28. Drumwright, E., Shell, D.A.: An evaluation of methods for modeling contact in multibody simulation. In: Robotics and Automation, ICRA, pp. 1695–1701 (2011)
  29. Hippmann Gerhard, An Algorithm for Compliant Contact Between Complexly Shaped Bodies, 10.1007/s11044-004-2513-4
  30. Pérez-González Antonio, Fenollosa-Esteve Carlos, Sancho-Bru Joaquín L., Sánchez-Marín Francisco T., Vergara Margarita, Rodríguez-Cervantes Pablo J., A modified elastic foundation contact model for application in 3D models of the prosthetic knee, 10.1016/j.medengphy.2007.04.001
  31. Simbody: Multibody Physics API. https://simtk.org/projects/simbody . Accessed 21 June 2016
  32. Negrello, F., Garabini, M., Catalano, M.G., Kryczka, P., Choi, W., Caldwell, D., Bicchi, A., Tsagarakis, N.G.: WALK-MAN humanoid lower body design optimization for enhanced physical performance. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 1817–1824 (2016)
  33. Simulators of the COMAN and WALK-MAN humanoid robots. https://gitlab.robotran.be/walkman/coman_robotran/ , https://gitlab.robotran.be/walkman/walkman_robotran/ . Accessed 21 June 2016