User menu

Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure

Bibliographic reference Kim, Ara ; Sanchez, C. ; Patriarche, G. ; Ersen, O. ; Moldovan, S. ; et. al. Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure. In: Catalysis Science & Technology, Vol. 6, p. 8117-8128 (2016)
Permanent URL
  1. Munnik Peter, de Jongh Petra E., de Jong Krijn P., Recent Developments in the Synthesis of Supported Catalysts, 10.1021/cr500486u
  2. Stratakis Manolis, Garcia Hermenegildo, Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes, 10.1021/cr3000785
  3. Cuenya Beatriz Roldan, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, 10.1016/j.tsf.2010.01.018
  4. Campelo Juan M., Luna Diego, Luque Rafael, Marinas José M., Romero Antonio A., Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis, 10.1002/cssc.200800227
  5. Campbell Charles T., The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity, 10.1021/ar3003514
  6. Prieto Gonzalo, Zečević Jovana, Friedrich Heiner, de Jong Krijn P., de Jongh Petra E., Towards stable catalysts by controlling collective properties of supported metal nanoparticles, 10.1038/nmat3471
  7. Kondratenko Evgenii V., Amrute Amol P., Pohl Marga-Martina, Steinfeldt Norbert, Mondelli Cecilia, Pérez-Ramírez Javier, Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation, 10.1039/c3cy00372h
  8. Tada Shohei, Kikuchi Ryuji, Takagaki Atsushi, Sugawara Takashi, Oyama S.Ted, Urasaki Kohei, Satokawa Shigeo, Study of RuNi/TiO2 catalysts for selective CO methanation, 10.1016/j.apcatb.2013.04.024
  9. Bell A. T., The Impact of Nanoscience on Heterogeneous Catalysis, 10.1126/science.1083671
  10. Martins J., Batail N., Silva S., Rafik-Clement S., Karelovic A., Debecker D.P., Chaumonnot A., Uzio D., CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues, 10.1016/j.catcom.2014.08.027
  11. Mahata N., Raghavan K. V., Vishwanathan V., Park C., Keane M. A., Phenol hydrogenation over palladium supported on magnesia: Relationship between catalyst structure and performance, 10.1039/b100237f
  12. Lin Qingquan, Liu Xiao Yan, Jiang Ying, Wang Yong, Huang Yanqiang, Zhang Tao, Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation, 10.1039/c4cy00030g
  13. Xiang Guolei, Shi Xuejun, Wu Yulong, Zhuang Jing, Wang Xun, Size effects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2, 10.1038/srep00801
  14. Chen M.S., Goodman D.W., Structure–activity relationships in supported Au catalysts, 10.1016/j.cattod.2005.10.007
  15. Van Santen Rutger A., Complementary Structure Sensitive and Insensitive Catalytic Relationships, 10.1021/ar800022m
  16. Campbell Charles T., Catalyst–support interactions: Electronic perturbations, 10.1038/nchem.1412
  17. Zhang Yang, Ren Tong, Silica supported ruthenium oxide nanoparticulates as efficient catalysts for water oxidation, 10.1039/c2cc35272a
  18. Aziz M. A. A., Jalil A. A., Triwahyono S., Ahmad A., CO2 methanation over heterogeneous catalysts: recent progress and future prospects, 10.1039/c5gc00119f
  19. Thampi K. Ravindranathan, Kiwi John, Grätzel Michael, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, 10.1038/327506a0
  20. Lunde Peter J., Kester Frank L., Carbon Dioxide Methanation on a Ruthenium Catalyst, 10.1021/i260049a005
  21. Karelovic Alejandro, Ruiz Patricio, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, 10.1016/j.jcat.2013.02.009
  22. Chen Xiaobo, Mao Samuel S., Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications, 10.1021/cr0500535
  23. Henderson M. A., Worley S. D., An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts, 10.1021/j100254a023
  24. Urasaki Kohei, Endo Ken-ichiro, Takahiro Tomoki, Kikuchi Ryuji, Kojima Toshinori, Satokawa Shigeo, Effect of Support Materials on the Selective Methanation of CO over Ru Catalysts, 10.1007/s11244-010-9509-5
  25. ERDOHELYI A, Catalytic hydrogenation of CO2 over supported palladium, 10.1016/0021-9517(86)90306-4
  26. Crihan Daniela, Knapp Marcus, Zweidinger Stefan, Lundgren Edvin, Weststrate Cornelis J., Andersen Jesper N., Seitsonen Ari P., Over Herbert, Stable Deacon Process for HCl Oxidation over RuO2, 10.1002/anie.200705124
  27. Over Herbert, Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research, 10.1021/cr200247n
  28. Lin Qingquan, Huang Yanqiang, Wang Yong, Li Lin, Liu Xiao Yan, Lv Fei, Wang Aiqin, Li Wen-Cui, Zhang Tao, RuO2/rutile-TiO2: a superior catalyst for N2O decomposition, 10.1039/c3ta15454h
  29. Seki Kohei, Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process, 10.1007/s10563-010-9091-7
  30. Debecker Damien P., Farin Benjamin, Gaigneaux Eric M., Sanchez Clément, Sassoye Capucine, Total oxidation of propane with a nano-RuO2/TiO2 catalyst, 10.1016/j.apcata.2014.04.043
  31. Abe Takayuki, Tanizawa Masaaki, Watanabe Kuniaki, Taguchi Akira, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method, 10.1039/b817740f
  32. Balaraju M., Rekha V., Devi B.L.A. Prabhavathi, Prasad R.B.N., Prasad P.S. Sai, Lingaiah N., Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol, 10.1016/j.apcata.2010.06.013
  33. Sassoye Capucine, Muller Guillaume, Debecker Damien P., Karelovic Alejandro, Cassaignon Sophie, Pizarro Christian, Ruiz Patricio, Sanchez Clément, A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia, 10.1039/c1gc15769h
  34. Pillai Suresh C., Periyat Pradeepan, George Reenamole, McCormack Declan E., Seery Michael K., Hayden Hugh, Colreavy John, Corr David, Hinder Steven J., Synthesis of High-Temperature Stable Anatase TiO2Photocatalyst, 10.1021/jp065933h
  35. Wetchakun Natda, Incessungvorn Burapat, Wetchakun Khatcharin, Phanichphant Sukon, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method, 10.1016/j.matlet.2012.05.092
  36. Ji L., Lin J., Zeng H. C., Thermal Processes of Volatile RuO2in Nanocrystalline Al2O3Matrixes Involving γ→α Phase Transformation, 10.1021/cm001420q
  37. Bell Wayne E., Tagami M., HIGH-TEMPERATURE CHEMISTRY OF THE RUTHENIUM—OXYGEN SYSTEM1, 10.1021/j100805a042
  38. Sch�fer Harald, Tebben Alfred, Gerhardt Wilfried, Zur Chemie der Platinmetalle. V Gleichgewichte mit Ru(f)5 RuO2(f)5 RuO3(g) und RuO4(g), 10.1002/zaac.19633210105
  39. Paquez Xavier, Amiard Guillaume, de Combarieu Guillaume, Boissière Cédric, Grosso David, Resistant RuO2/SiO2Absorbing Sol–Gel Coatings for Solar Energy Conversion at High Temperature, 10.1021/acs.chemmater.5b00731
  40. Hansen Thomas W., DeLaRiva Andrew T., Challa Sivakumar R., Datye Abhaya K., Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, 10.1021/ar3002427
  41. F. Garisto , AECL-9552, Whiteshell Nucl. Res. Establ., 1988
  42. Simonsen Søren B., Chorkendorff Ib, Dahl Søren, Skoglundh Magnus, Sehested Jens, Helveg Stig, Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM, 10.1021/ja910094r
  43. Yoshida Kenta, Bright Alexander, Tanaka Nobuo, Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy, 10.1093/jmicro/dfr100
  44. Benavidez Angelica D., Kovarik Libor, Genc Arda, Agrawal Nitin, Larsson Elin M., Hansen Thomas W., Karim Ayman M., Datye Abhaya K., Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts, 10.1021/cs3005117
  45. Hevia Miguel A.G., Amrute Amol P., Schmidt Timm, Pérez-Ramírez Javier, Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts, 10.1016/j.jcat.2010.09.009
  46. Madhavaram H, Idriss H, Wendt S, Kim Y.D, Knapp M, Over H, Aßmann J, Löffler E, Muhler M, Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces, 10.1006/jcat.2001.3281
  47. Balint, Society, 932 (2001)
  48. Fernández Camila, Sassoye Capucine, Debecker Damien P., Sanchez Clément, Ruiz Patricio, Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions, 10.1016/j.apcata.2013.09.039
  49. Fernández Camila, Sassoye Capucine, Flores Nicolas, Escalona Néstor, Gaigneaux Eric M., Sanchez Clément, Ruiz Patricio, Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis, 10.1016/j.apcata.2015.05.023
  50. Karelovic Alejandro, Ruiz Patricio, CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism, 10.1016/j.apcatb.2011.11.043
  51. Chiu Cheng-chau, Genest Alexander, Borgna Armando, Rösch Notker, C–O cleavage of aromatic oxygenates over ruthenium catalysts. A computational study of reactions at step sites, 10.1039/c5cp01027f
  52. Solymosi F., Erdöhelyi A., Methanation of CO2 on Supported Rhodium Catalysts, New Horizons in Catalysis, Proceedings of the 7th International Congress on Catalysis (1981) ISBN:9780444997395 p.1448-1449, 10.1016/s0167-2991(08)64768-0
  53. Fisher Ian A., Bell Alexis T., A Comparative Study of CO and CO2Hydrogenation over Rh/SiO2, 10.1006/jcat.1996.0259
  54. Carenco Sophie, Sassoye Capucine, Faustini Marco, Eloy Pierre, Debecker Damien P., Bluhm Hendrik, Salmeron Miquel, The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation, 10.1021/acs.jpcc.6b06313
  55. Dufour Fabien, Cassaignon Sophie, Durupthy Olivier, Colbeau-Justin Christophe, Chanéac Corinne, Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven?, 10.1002/ejic.201101269
  56. Magne C., Dufour F., Labat F., Lancel G., Durupthy O., Cassaignon S., Pauporté Th., Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties, 10.1016/j.jphotochem.2012.01.015
  57. Batenburg K.J., Bals S., Sijbers J., Kübel C., Midgley P.A., Hernandez J.C., Kaiser U., Encina E.R., Coronado E.A., Van Tendeloo G., 3D imaging of nanomaterials by discrete tomography, 10.1016/j.ultramic.2009.01.009
  58. Zürner Andreas, Döblinger Markus, Cauda Valentina, Wei Ruoshan, Bein Thomas, Discrete tomography of demanding samples based on a modified SIRT algorithm, 10.1016/j.ultramic.2012.01.015
  59. J. Rodriguez-Carvajal and T.Roisnel, WinPLOTR, a graphic tool for powder diffraction, Institut Laue Langevin, 2016
  60. Patterson A. L., The Scherrer Formula for X-Ray Particle Size Determination, 10.1103/physrev.56.978
  61. Over H., Seitsonen A.P., Lundgren E., Smedh M., Andersen J.N., On the origin of the Ru-3d5/2 satellite feature from RuO2(), 10.1016/s0039-6028(01)01979-3
  62. GOODWIN J, Characterization of highly dispersed Ru catalysts by chemisorption, 10.1016/0021-9517(81)90063-4
  63. Okal J., Zawadzki M., Kępiński L., Krajczyk L., Tylus W., The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts, 10.1016/j.apcata.2006.12.005