User menu

New concepts in low-temperature catalytic hydrogenation and their implications for process intensification

Bibliographic reference Fernandez, Camila ; Karelovic Burotto, Alejandro ; Gaigneaux, Eric M. ; Ruiz, Patricio. New concepts in low-temperature catalytic hydrogenation and their implications for process intensification. In: Canadian Journal of Chemical Engineering, Vol. 94, p. 662-677 (2016)
Permanent URL http://hdl.handle.net/2078.1/177408
  1. Becht Simon, Franke Robert, Geißelmann Andreas, Hahn Henrik, An industrial view of process intensification, 10.1016/j.cep.2008.04.012
  2. Stankiewicz, Chem. Eng. Prog, 96, 22 (2000)
  3. Ponce-Ortega José María, Al-Thubaiti Musaed M., El-Halwagi Mahmoud M., Process intensification: New understanding and systematic approach, 10.1016/j.cep.2011.12.010
  4. Patience Gregory S., Bordes-Richard Elisabeth, International VPO Workshop: Preface, 10.1016/j.apcata.2010.02.010
  5. Blanco Raquel Mateos, Shekari Ali, Carrazán Silvia González, Bordes-Richard Elisabeth, Patience Gregory S., Ruiz Patricio, Significant catalytic recovery of spent industrial DuPont catalysts by surface deposition of an amorphous vanadium-phosphorus oxide phase, 10.1016/j.cattod.2012.04.019
  6. Lorences Marı́a J., Patience Gregory S., Dı́ez Fernando V., Coca José, Transient n-butane partial oxidation kinetics over VPO, 10.1016/j.apcata.2003.12.023
  7. Rao C. N. Ramachandra, Kulkarni Giridhar U., Thomas P. John, Edwards Peter P., Metal nanoparticles and their assemblies, 10.1039/a904518j
  8. Burda Clemens, Chen Xiaobo, Narayanan Radha, El-Sayed Mostafa A., Chemistry and Properties of Nanocrystals of Different Shapes, 10.1021/cr030063a
  9. Harding Chris, Habibpour Vahideh, Kunz Sebastian, Farnbacher Adrian Nam-Su, Heiz Ueli, Yoon Bokwon, Landman Uzi, Control and Manipulation of Gold Nanocatalysis: Effects of Metal Oxide Support Thickness and Composition, 10.1021/ja804893b
  10. Panagiotopoulou Paraskevi, Kondarides Dimitris I., Verykios Xenophon E., Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance, 10.1016/j.apcata.2008.03.039
  11. Panagiotopoulou Paraskevi, Kondarides Dimitris I., Verykios Xenophon. E., Selective methanation of CO over supported Ru catalysts, 10.1016/j.apcatb.2008.10.012
  12. Panagiotopoulou Paraskevi, Kondarides Dimitris I., Verykios X. E., Chemical Reaction Engineering and Catalysis Issues in Distributed Power Generation Systems, 10.1021/ie100132g
  13. Karelovic Alejandro, Ruiz Patricio, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, 10.1016/j.jcat.2013.02.009
  14. Bezemer G. Leendert, Bitter Johannes H., Kuipers Herman P. C. E., Oosterbeek Heiko, Holewijn Johannes E., Xu Xiaoding, Kapteijn Freek, van Dillen A. Jos, de Jong Krijn P., Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, 10.1021/ja058282w
  15. den Breejen J. P., Radstake P. B., Bezemer G. L., Bitter J. H., Frøseth V., Holmen A., Jong K. P. de, On the Origin of the Cobalt Particle Size Effects in Fischer−Tropsch Catalysis, 10.1021/ja901006x
  16. Herranz Tirma, Deng Xingyi, Cabot Andreu, Guo Jingua, Salmeron Miquel, Influence of the Cobalt Particle Size in the CO Hydrogenation Reaction Studied by In Situ X-Ray Absorption Spectroscopy, 10.1021/jp901602s
  17. Carballo Juan María González, Yang Jia, Holmen Anders, García-Rodríguez Sergio, Rojas Sergio, Ojeda Manuel, Fierro José Luis G., Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis, 10.1016/j.jcat.2011.09.008
  18. Yang Jia, Tveten Erik Z., Chen De, Holmen Anders, Understanding the Effect of Cobalt Particle Size on Fischer−Tropsch Synthesis: Surface Species and Mechanistic Studies by SSITKA and Kinetic Isotope Effect†, 10.1021/la101555u
  19. Karelovic Alejandro, Ruiz Patricio, CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism, 10.1016/j.apcatb.2011.11.043
  20. Vannice M. Albert, Kinetics of Catalytic Reactions, ISBN:9780387246499, 10.1007/b136380
  21. Force C., Ruiz Paniego A., Guil J. M., Gatica J. M., López-Cartes C., Bernal S., Sanz J., Metal Sintering in Rh/Al2O3Catalysts Followed by HREM,1H NMR, and H2Chemisorption, 10.1021/la0012891
  22. Bond Geoffrey C., The Use of Kinetics in Evaluating Mechanisms in Heterogeneous Catalysis, 10.1080/01614940802480338
  23. Vannice M.A., Hydrogenation of co and carbonyl functional groups, 10.1016/0920-5861(92)85044-m
  24. Chinchen G.C., Spencer M.S., Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide, 10.1016/0920-5861(91)80009-x
  25. ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, 10.1016/j.jcat.2007.04.003
  26. Natesakhawat Sittichai, Lekse Jonathan W., Baltrus John P., Ohodnicki Paul R., Howard Bret H., Deng Xingyi, Matranga Christopher, Active Sites and Structure–Activity Relationships of Copper-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, 10.1021/cs300008g
  27. Karelovic Alejandro, Bargibant Alice, Fernández Camila, Ruiz Patricio, Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions, 10.1016/j.cattod.2012.07.029
  28. Karelovic Alejandro, Ruiz Patricio, The role of copper particle size in low pressure methanol synthesis via CO2hydrogenation over Cu/ZnO catalysts, 10.1039/c4cy00848k
  29. Courty Ph., Ajot H., Marcilly Ch., Delmon B., Oxydes mixtes ou en solution solide sous forme très divisée obtenus par décomposition thermique de précurseurs amorphes, 10.1016/0032-5910(73)80005-1
  30. Fichtl Matthias B., Schumann Julia, Kasatkin Igor, Jacobsen Nikolas, Behrens Malte, Schlögl Robert, Muhler Martin, Hinrichsen Olaf, Counting of Oxygen Defects versus Metal Surface Sites in Methanol Synthesis Catalysts by Different Probe Molecules, 10.1002/anie.201400575
  31. Kuld Sebastian, Conradsen Christian, Moses Poul Georg, Chorkendorff Ib, Sehested Jens, Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst, 10.1002/anie.201311073
  32. Evans J.W., Wainwright M.S., Bridgewater A.J., Young D.J., On the determination of copper surface area by reaction with nitrous oxide, 10.1016/0166-9834(83)80239-5
  33. Van Santen Rutger A., Complementary Structure Sensitive and Insensitive Catalytic Relationships, 10.1021/ar800022m
  34. Askgaard T.S., Norskov J.K., Ovesen C.V., Stoltze P., A Kinetic Model of Methanol Synthesis, 10.1006/jcat.1995.1250
  35. Grabow L. C., Mavrikakis M., Mechanism of Methanol Synthesis on Cu through CO2and CO Hydrogenation, 10.1021/cs200055d
  36. Fernández Camila, Pezzotta Chiara, Gaigneaux Eric M., Bion Nicolas, Duprez Daniel, Ruiz Patricio, Disclosing the synergistic mechanism in the catalytic activity of different-sized Ru nanoparticles for ammonia synthesis at mild reaction conditions, 10.1016/j.cattod.2014.11.010
  37. Fernández Camila, Sassoye Capucine, Debecker Damien P., Sanchez Clément, Ruiz Patricio, Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions, 10.1016/j.apcata.2013.09.039
  38. Fernández Camila, Sassoye Capucine, Flores Nicolas, Escalona Néstor, Gaigneaux Eric M., Sanchez Clément, Ruiz Patricio, Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis, 10.1016/j.apcata.2015.05.023
  39. Dahl S., Logadottir A., Egeberg R. C., Larsen J. H., Chorkendorff I., Törnqvist E., Nørskov J. K., Role of Steps inN2Activation on Ru(0001), 10.1103/physrevlett.83.1814
  40. DAHL S, SEHESTED J, JACOBSEN C, TORNQVIST E, CHORKENDORFF I, Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts, 10.1006/jcat.2000.2857
  41. Jacobsen Claus J.H, Dahl Søren, Hansen Poul L, Törnqvist Eric, Jensen Lone, Topsøe Henrik, Prip Dorthe V, Møenshaug Pernille B, Chorkendorff Ib, Structure sensitivity of supported ruthenium catalysts for ammonia synthesis, 10.1016/s1381-1169(00)00396-4
  42. Lin Bingyu, Wei Kemei, Lin Jianxin, Ni Jun, Effect of treatment conditions on ruthenium particle size and ammonia synthesis activity of ruthenium catalyst, 10.1016/j.catcom.2013.05.003
  43. Karim Ayman M., Prasad Vinay, Mpourmpakis Giannis, Lonergan William W., Frenkel Anatoly I., Chen Jingguang G., Vlachos Dionisios G., Correlating Particle Size and Shape of Supported Ru/γ-Al2O3Catalysts with NH3Decomposition Activity, 10.1021/ja902587k
  44. Kowalczyk Zbigniew, Jodzis Sławomir, Raróg Wioletta, Zieliński Jerzy, Pielaszek Jerzy, Presz Adam, Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance, 10.1016/s0926-860x(99)00090-3
  45. RAROGPILECKA W, MISKIEWICZ E, SZMIGIEL D, KOWALCZYK Z, Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon, 10.1016/j.jcat.2004.12.005
  46. Liang Changhai, Wei Zhaobin, Xin Qin, Li Can, Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds, 10.1016/s0926-860x(00)00713-4
  47. Vojvodic Aleksandra, Medford Andrew James, Studt Felix, Abild-Pedersen Frank, Khan Tuhin Suvra, Bligaard T., Nørskov J.K., Exploring the limits: A low-pressure, low-temperature Haber–Bosch process, 10.1016/j.cplett.2014.03.003
  48. Honkala K., Ammonia Synthesis from First-Principles Calculations, 10.1126/science.1106435
  49. Sassoye Capucine, Muller Guillaume, Debecker Damien P., Karelovic Alejandro, Cassaignon Sophie, Pizarro Christian, Ruiz Patricio, Sanchez Clément, A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia, 10.1039/c1gc15769h
  50. Betancourt P, Rives A, Hubaut R, Scott C.E, Goldwasser J, A study of the ruthenium–alumina system, 10.1016/s0926-860x(98)00061-1
  51. Kerkhof F. P. J. M., Moulijn J. A., Quantitative analysis of XPS intensities for supported catalysts, 10.1021/j100475a011
  52. Benkhaled Mersaka, Descorme Claude, Duprez Daniel, Morin Stéphane, Thomazeau Cécile, Uzio Denis, Study of hydrogen surface mobility and hydrogenation reactions over alumina-supported palladium catalysts, 10.1016/j.apcata.2008.04.043
  53. Thomas C., Vivier L., Travert A., Maugé F., Kasztelan S., Pérot G., Deuterium Tracer Studies on Hydrotreating Catalysts. 2. Contribution of the Hydrogen of the Alumina Support to H-D Exchange, 10.1006/jcat.1998.2218
  54. DMITRIEV R, Mechanism of hydrogen spillover and its role in deuterium exchange on PtY zeolite, 10.1016/0021-9517(80)90282-1
  55. Chou M. Y., Chelikowsky James R., First-principles study of hydrogen adsorption on Ru(0001): Possible occupation of subsurface sites, 10.1103/physrevlett.59.1737
  56. Gutmann Torsten, Walaszek Bernadeta, Yeping Xu, Wächtler Maria, del Rosal Iker, Grünberg Anna, Poteau Romuald, Axet Rosa, Lavigne Guy, Chaudret Bruno, Limbach Hans-Heinrich, Buntkowsky Gerd, Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles. Solid-State2H NMR and Quantum Chemical Calculations, 10.1021/ja104229a
  57. Förster A., Kapphan S., Wöhlecke M., Overtone Spectroscopy of the OH and OD Stretch Modes in LiNbO3, 10.1002/pssb.2221430236
  58. Loni A., De La Rue R. M., Winfield J. M., Proton‐exchanged, lithium niobate planar‐optical waveguides: Chemical and optical properties and room‐temperature hydrogen isotopic exchange reactions, 10.1063/1.338801
  59. Burch R., Chappell R. J., Golunski S. E., Synergy at a distance in the synthesis of methanol over copper catalysts, 10.1007/bf00766204
  60. Fujitani T., Matsuda T., Kushida Y., Ogihara S., Uchijima T., Nakamura J., 10.1023/a:1019069708459
  61. Ovesen C.V., Clausen B.S., Schiøtz J., Stoltze P., Topsøe H., Nørskov J.K., Kinetic Implications of Dynamical Changes in Catalyst Morphology during Methanol Synthesis over Cu/ZnO Catalysts, 10.1006/jcat.1997.1629
  62. Rasmussen P. B., Holmblad P. M., Askgaard T., Ovesen C. V., Stoltze P., N�rskov J. K., Chorkendorff I., Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2, 10.1007/bf00810611
  63. Yoshihara Jun, Campbell Charles T., Methanol Synthesis and Reverse Water–Gas Shift Kinetics over Cu(110) Model Catalysts: Structural Sensitivity, 10.1006/jcat.1996.0240
  64. Yoshihara Jun, Parker S. C., Schafer Adam, Campbell Charles T., Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper, 10.1007/bf00808595
  65. Abe Takayuki, Tanizawa Masaaki, Watanabe Kuniaki, Taguchi Akira, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method, 10.1039/b817740f
  66. Kowalczyk Zbigniew, Stołecki Kazimierz, Raróg-Pilecka Wioletta, Miśkiewicz Elżbieta, Wilczkowska Ewa, Karpiński Zbigniew, Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios, 10.1016/j.apcata.2007.12.040
  67. Kai T., Matsumura T., Takahashi T., The effect of support structure on CO2 hydrogenation over a rhodium catalyst supported on niobium oxide, 10.1007/bf00764363