User menu

Delta method and bootstrap in linear mixed models to estimate a proportion when no event is observed: application to intralesional resection in bone tumor surgery.

Bibliographic reference Francq, Bernard ; Cartiaux, Olivier. Delta method and bootstrap in linear mixed models to estimate a proportion when no event is observed: application to intralesional resection in bone tumor surgery.. In: Statistics in Medicine, Vol. 35, no.20, p. 3563-3582 (2016)
Permanent URL http://hdl.handle.net/2078.1/177225
  1. Lewis Valerae O, Whatʼs New in Musculoskeletal Oncology : , 10.2106/jbjs.i.00375
  2. Abraham John A., Recent advances in navigation-assisted musculoskeletal tumor resection : , 10.1097/bco.0b013e318221b1a3
  3. Cartiaux, European Musculoskeletal Review, 6, 125 (2011)
  4. Docquier Pierre-Louis, Paul Laurent, Cartiaux Olivier, Delloye Christian, Banse Xavier, Computer-Assisted Resection and Reconstruction of Pelvic Tumor Sarcoma, 10.1155/2010/125162
  5. Delloye Christian, Pelvic Reconstruction with a Structural Pelvic Allograft After Resection of a Malignant Bone Tumor, 10.2106/jbjs.e.00943
  6. Cartiaux Olivier, Docquier Pierre-Louis, Paul Laurent, Francq Bernard G, Cornu Olivier H, Delloye Christian, Raucent Benoît, Dehez Bruno, Banse Xavier, Surgical inaccuracy of tumor resection and reconstruction within the pelvis: An experimental study, 10.1080/17453670810016731
  7. Paul Laurent, Cartiaux Olivier, Docquier Pierre-Louis, Banse Xavier, Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device, 10.1002/rcs.275
  8. Cartiaux Olivier, Paul Laurent, Docquier Pierre-Louis, Francq Bernard G, Raucent Benoît, Dombre Etienne, Banse Xavier, Accuracy in planar cutting of bones: an ISO-based evaluation, 10.1002/rcs.237
  9. Cartiaux Olivier, Banse Xavier, Paul Laurent, Francq Bernard G., Aubin Carl-Éric, Docquier Pierre-Louis, Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis, 10.3109/10929088.2012.744096
  10. Hanley James A., If Nothing Goes Wrong, Is Everything All Right? : Interpreting Zero Numerators, 10.1001/jama.1983.03330370053031
  11. Eypasch E., Lefering R., Kum C K, Troidl H., Probability of adverse events that have not yet occurred: a statistical reminder, 10.1136/bmj.311.7005.619
  12. Dorai-Raj S binom: Binomial confidence intervals for several parameterizations 2014 http://CRAN.R-project.org/package=binom
  13. Wilson Edwin B., Probable Inference, the Law of Succession, and Statistical Inference, 10.1080/01621459.1927.10502953
  14. Newcombe Robert G., Two-sided confidence intervals for the single proportion: comparison of seven methods, 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
  15. DasGupta Anirban, Cai T. Tony, Brown Lawrence D., Interval Estimation for a Binomial Proportion, 10.1214/ss/1009213286
  16. CLOPPER C. J., PEARSON E. S., THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL, 10.1093/biomet/26.4.404
  17. Agresti, The American Statistician, 52, 119 (1998)
  18. Wallis Sean, Binomial Confidence Intervals and Contingency Tests: Mathematical Fundamentals and the Evaluation of Alternative Methods, 10.1080/09296174.2013.799918
  19. Reiczigel Jen�, Confidence intervals for the binomial parameter: some new considerations, 10.1002/sim.1320
  20. Sauro J Lewis JR Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommedations Proceedings of the Human Factors and Ergonomics Society 2005 n2100 20104
  21. Michael, An introduction to bootstrap methods with applications to r (2012)
  22. Casella, Statistical inference (2001)
  23. van der Vaart A. W., Asymptotic Statistics, ISBN:9780511802256, 10.1017/cbo9780511802256
  24. Rice, Mathematical statistics and data analysis (1994)
  25. Oehlert, The American Statistician, 46, 27 (1992)
  26. Efron Bradley, Tibshirani Robert J., An Introduction to the Bootstrap, ISBN:9780412042317, 10.1007/978-1-4899-4541-9
  27. Feng Changyong, Wang Hongyue, Lu Naiji, Tu Xin M., Log transformation: application and interpretation in biomedical research, 10.1002/sim.5486
  28. Bland J.M., Altman D.G., Rohlf F.J., In defence of logarithmic transformations, 10.1002/sim.5772
  29. Feng Changyong, Wang Hongyue, Lu Naiji, Tu Xin M., Response to comments on ‘Log transformation: Application and interpretation in biomedical research’, 10.1002/sim.5840
  30. Alexander Neal, Anaya-Izquierdo Karim, Comments on ‘Log transformation: application and interpretation in biomedical research’, 10.1002/sim.5774
  31. Brown Helen, Prescott Robin, Applied Mixed Models in Medicine : Brown/Applied Mixed Models in Medicine, 2nd Edition, ISBN:9780470023587, 10.1002/0470023589
  32. Qu Long, Guennel Tobias, Marshall Scott L., Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies : Linear Score Tests for Variance Components, 10.1111/biom.12095
  33. Wolfinger Russ, Tobias Randy, Sall John, Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models, 10.1137/0915079
  34. Harville David A., Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems, 10.1080/01621459.1977.10480998
  35. McLean RA Sanders WL Approximating degrees of freedom for standard errors in mixed linear models Proceedings of the Statistical Computing Section 1988
  36. Kackar, Journal of the American Statistical Association, 79, 853 (1984)
  37. Prasad N. G. N., Rao J. N. K., The Estimation of the Mean Squared Error of Small-Area Estimators, 10.1080/01621459.1990.10475320
  38. Huber, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221 (1967)
  39. White Halbert, A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, 10.2307/1912934
  40. LIANG KUNG-YEE, ZEGER SCOTT L., Longitudinal data analysis using generalized linear models, 10.1093/biomet/73.1.13
  41. Diggle, Analysis of longitudinal data (2002)
  42. EFRON BRADLEY, HINKLEY DAVID V., Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, 10.1093/biomet/65.3.457
  43. Wand M.P., Fisher information for generalised linear mixed models, 10.1016/j.jmva.2007.01.001
  44. Morris Jeffrey S, The BLUPs are not “best” when it comes to bootstrapping, 10.1016/s0167-7152(02)00041-x
  45. Qu L varcomp: variance component models 2015 http://CRAN.R-project.org/package=varComp