User menu

Verifiable Multi-Party Computation with Perfectly Private Audit Trail

Bibliographic reference Cuvelier, Édouard ; Pereira, Olivier. Verifiable Multi-Party Computation with Perfectly Private Audit Trail.The 14th International Conference on Applied Cryptography and Network Security (ACNS 2016) (London, United Kingdom, du 19/06/2016 au 22/06/2016). In: Applied Cryptography and Network Security 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, Vol. 9696, no.1, p. pp 367-385 (2016)
Permanent URL
  1. Damgård Ivan, Keller Marcel, Larraia Enrique, Pastro Valerio, Scholl Peter, Smart Nigel P., Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits, Lecture Notes in Computer Science (2013) ISBN:9783642402029 p.1-18, 10.1007/978-3-642-40203-6_1
  2. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. IACR Cryptology ePrint Archive 2014/75 (2014)
  3. Aly Abdelrahaman, Cuvelier Edouard, Mawet Sophie, Pereira Olivier, Van Vyve Mathieu, Securely Solving Simple Combinatorial Graph Problems, Financial Cryptography and Data Security (2013) ISBN:9783642398834 p.239-257, 10.1007/978-3-642-39884-1_21
  4. Bogetoft Peter, Christensen Dan Lund, Damgård Ivan, Geisler Martin, Jakobsen Thomas, Krøigaard Mikkel, Nielsen Janus Dam, Nielsen Jesper Buus, Nielsen Kurt, Pagter Jakob, Schwartzbach Michael, Toft Tomas, Secure Multiparty Computation Goes Live, Financial Cryptography and Data Security (2009) ISBN:9783642035487 p.325-343, 10.1007/978-3-642-03549-4_20
  5. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. EVT/WOTE 9, 10–10 (2009)
  6. Parno B., Howell J., Gentry C., Raykova M., Pinocchio: Nearly Practical Verifiable Computation, 10.1109/sp.2013.47
  7. Costello Craig, Fournet Cedric, Howell Jon, Kohlweiss Markulf, Kreuter Benjamin, Naehrig Michael, Parno Bryan, Zahur Samee, Geppetto: Versatile Verifiable Computation, 10.1109/sp.2015.23
  8. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: Adsnark: nearly practical and privacy-preserving proofs on authenticated data. Cryptology ePrint Archive, Report 2014/617 (2014).
  9. Zhang Yupeng, Papamanthou Charalampos, Katz Jonathan, ALITHEIA : Towards Practical Verifiable Graph Processing, 10.1145/2660267.2660354
  10. Gennaro Rosario, Gentry Craig, Parno Bryan, Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers, Advances in Cryptology – CRYPTO 2010 (2010) ISBN:9783642146220 p.465-482, 10.1007/978-3-642-14623-7_25
  11. Choi Seung Geol, Katz Jonathan, Kumaresan Ranjit, Cid Carlos, Multi-Client Non-interactive Verifiable Computation, Theory of Cryptography (2013) ISBN:9783642365935 p.499-518, 10.1007/978-3-642-36594-2_28
  12. Goldwasser Shafi, Gordon S. Dov, Goyal Vipul, Jain Abhishek, Katz Jonathan, Liu Feng-Hao, Sahai Amit, Shi Elaine, Zhou Hong-Sheng, Multi-input Functional Encryption, Advances in Cryptology – EUROCRYPT 2014 (2014) ISBN:9783642552199 p.578-602, 10.1007/978-3-642-55220-5_32
  13. Gordon S. Dov, Katz Jonathan, Liu Feng-Hao, Shi Elaine, Zhou Hong-Sheng, Multi-Client Verifiable Computation with Stronger Security Guarantees, Theory of Cryptography (2015) ISBN:9783662464960 p.144-168, 10.1007/978-3-662-46497-7_6
  14. Rabin, M.O., Servedio, R.A., Thorpe, C.: Highly efficient secrecy-preserving proofs of correctness of computation, US Patent App. 12/105, 508, 18 April 2008
  15. Parkes David C., Rabin Michael O., Shieber Stuart M., Thorpe Christopher, Practical secrecy-preserving, verifiably correct and trustworthy auctions, 10.1016/j.elerap.2008.04.006
  16. Canetti R., Universally composable security: a new paradigm for cryptographic protocols, 10.1109/sfcs.2001.959888
  17. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: SIAM Journal on Computing, pp. 542–552 (1998)
  18. Bernhard David, Pereira Olivier, Warinschi Bogdan, How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios, Advances in Cryptology – ASIACRYPT 2012 (2012) ISBN:9783642349607 p.626-643, 10.1007/978-3-642-34961-4_38
  19. Damgård, I.: On $$\Sigma $$ Σ -protocols (2004).
  20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
  21. Bellare Mihir, Rogaway Phillip, Random oracles are practical : a paradigm for designing efficient protocols, 10.1145/168588.168596
  22. Cuvelier Édouard, Pereira Olivier, Peters Thomas, Election Verifiability or Ballot Privacy: Do We Need to Choose?, Lecture Notes in Computer Science (2013) ISBN:9783642402029 p.481-498, 10.1007/978-3-642-40203-6_27
  23. Cramer Ronald, Damgård Ivan, Schoenmakers Berry, Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols, Advances in Cryptology — CRYPTO ’94 ISBN:9783540583332 p.174-187, 10.1007/3-540-48658-5_19
  24. Chaum David, Pedersen Torben Pryds, Wallet Databases with Observers, Advances in Cryptology — CRYPTO’ 92 ISBN:9783540573401 p.89-105, 10.1007/3-540-48071-4_7
  25. Terelius Björn, Wikström Douglas, Proofs of Restricted Shuffles, Progress in Cryptology – AFRICACRYPT 2010 (2010) ISBN:9783642126772 p.100-113, 10.1007/978-3-642-12678-9_7