User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

A two-phase thermomechanical theory for granular suspensions

  1. ATKIN R. J., CRAINE R. E., CONTINUUM THEORIES OF MIXTURES: BASIC THEORY AND HISTORICAL DEVELOPMENT, 10.1093/qjmam/29.2.209
  2. Baer M.R., Nunziato J.W., A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, 10.1016/0301-9322(86)90033-9
  3. Barker T., Schaeffer D. G., Bohorquez P., Gray J. M. N. T., Well-posed and ill-posed behaviour of the -rheology for granular flow, 10.1017/jfm.2015.412
  4. Bdzil J. B., Menikoff R., Son S. F., Kapila A. K., Stewart D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, 10.1063/1.869887
  5. Bedeaux D., Rubi J.M., Nonequilibrium thermodynamics of colloids, 10.1016/s0378-4371(01)00554-4
  6. Benyahia Sofiane, Syamlal Madhava, O'Brien Thomas J., Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction, 10.1016/j.powtec.2005.12.014
  7. Boyer François, Guazzelli Élisabeth, Pouliquen Olivier, Unifying Suspension and Granular Rheology, 10.1103/physrevlett.107.188301
  8. Boyer François, Pouliquen Olivier, Guazzelli Élisabeth, Dense suspensions in rotating-rod flows: normal stresses and particle migration, 10.1017/jfm.2011.272
  9. Brady John F., Computer simulation of viscous suspensions, 10.1016/s0009-2509(00)00475-9
  10. Brady John F., Bossis Georges, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, 10.1017/s0022112085001732
  11. Brady J F, Bossis G, Stokesian Dynamics, 10.1146/annurev.fl.20.010188.000551
  12. Brady John F, Carpen Ileana C, Second normal stress jump instability in non-Newtonian fluids, 10.1016/s0377-0257(01)00179-3
  13. BRADY JOHN F., KHAIR ADITYA S., SWAROOP MANUJ, On the bulk viscosity of suspensions, 10.1017/s0022112006009438
  14. BRADY JOHN F., MORRIS JEFFREY F., Microstructure of strongly sheared suspensions and its impact on rheology and diffusion, 10.1017/s0022112097006320
  15. BRIGGS A., HWANG C. C., MASSOUDI M., FLOW OF A DENSE PARTICULATE MIXTURE USING A MODIFIED FORM OF THE MIXTURE THEORY, 10.1080/02726359908906803
  16. Carson James K., Lovatt Simon J., Tanner David J., Cleland Andrew C., Thermal conductivity bounds for isotropic, porous materials, 10.1016/j.ijheatmasstransfer.2004.12.032
  17. Chiodi Filippo, Claudin Philippe, Andreotti Bruno, A two-phase flow model of sediment transport: transition from bedload to suspended load, 10.1017/jfm.2014.422
  18. Cochran Michael T., Powers Joseph M., Computation of compaction in compressible granular material, 10.1016/j.mechrescom.2007.10.003
  19. Cowin S. C., Goodman M. A., A Variational Principle for Granular Materials, 10.1002/zamm.19760560702
  20. Da Cruz, Phys. Rev. E, 72 (2005)
  21. Dbouk T., Lobry L., Lemaire E., Normal stresses in concentrated non-Brownian suspensions, 10.1017/jfm.2012.516
  22. Deledicque Vincent, Papalexandris Miltiadis V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, 10.1016/j.jcp.2006.07.025
  23. Denn Morton M., Morris Jeffrey F., Rheology of Non-Brownian Suspensions, 10.1146/annurev-chembioeng-060713-040221
  24. Drew Donald A., Passman Stephen L., Theory of Multicomponent Fluids, ISBN:9781468492279, 10.1007/b97678
  25. Dunn J.E., Serrin J., On the thermomechanics of interstitial working, 10.1007/bf00250907
  26. Elban W.L., Chiarito M.A., Quasi-static compaction study of coarse HMX explosive, 10.1016/0032-5910(86)80025-0
  27. Fang Chung, Wang Yongqi, Hutter Kolumban, A thermo-mechanical continuum theory with internal length for cohesionless granular materials : Part II. Non-equilibrium postulates and numerical simulations of simple shear, plane Poiseuille and gravity driven problems, 10.1007/s00161-006-0008-7
  28. Fang Zhiwu, Mammoli Andrea A., Brady John F., Ingber Marc S., Mondy Lisa A., Graham Alan L., Flow-aligned tensor models for suspension flows, 10.1016/s0301-9322(01)00055-6
  29. Forterre Yoël, Pouliquen Olivier, Flows of Dense Granular Media, 10.1146/annurev.fluid.40.111406.102142
  30. FOSS DAVID R., BRADY JOHN F., Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation, 10.1017/s0022112099007557
  31. Frith W.J., Mewis J., Strivens T.A., Rheology of concentrated suspensions: experimental investigations, 10.1016/0032-5910(87)80037-2
  32. Gao, Phys. Rev. E, 81 (2010)
  33. Gao, Phys. Rev. E, 79 (2009)
  34. GODDARD J. D., A dissipative anisotropic fluid model for non-colloidal particle dispersions, 10.1017/s0022112006002333
  35. Goodman M.A., Cowin S.C., A continuum theory for granular materials, 10.1007/bf00284326
  36. Gough P. S., Zwarts F. J., Modeling Heterogeneous Two-Phase Reacting Flow, 10.2514/3.61057
  37. Gray J. M. N. T., Edwards A. N., A depth-averaged -rheology for shallow granular free-surface flows, 10.1017/jfm.2014.450
  38. Hampton R. E., Mammoli A. A., Graham A. L., Tetlow N., Altobelli S. A., Migration of particles undergoing pressure-driven flow in a circular conduit, 10.1122/1.550863
  39. Henann D. L., Kamrin K., A predictive, size-dependent continuum model for dense granular flows, 10.1073/pnas.1219153110
  40. Henann David L., Kamrin Ken, Continuum thermomechanics of the nonlocal granular rheology, 10.1016/j.ijplas.2014.05.002
  41. Hinch E. J., The measurement of suspension rheology, 10.1017/jfm.2011.350
  42. The Physics of Granular Media : HINRICHSEN:GRANULAR MEDIA O-BK, ISBN:9783527603626, 10.1002/352760362x
  43. Jackson, The Dynamics of Fluidized Particles (2000)
  44. Jop Pierre, Forterre Yoël, Pouliquen Olivier, A constitutive law for dense granular flows, 10.1038/nature04801
  45. Josserand, Eur. Phys. J. E, 14, 127 (2004)
  46. Josserand C, Lagrée P.-Y, Lhuillier D, Granular pressure and the thickness of a layer jamming on a rough incline, 10.1209/epl/i2005-10398-1
  47. Kamrin, Phys. Rev. Lett., 108 (2012)
  48. Karnis A., Goldsmith H.L., Mason S.G., The kinetics of flowing dispersions, 10.1016/0021-9797(66)90048-8
  49. Kirchner, Proc. R. Soc. Lond. A, 458, 2015 (2002)
  50. Koh Christopher J., Hookham Philip, Leal L. G., An experimental investigation of concentrated suspension flows in a rectangular channel, 10.1017/s0022112094000911
  51. Krier Herman, Gokhale S., Modeling of Convective Mode Combustion through Granulated Propellant to Predict Detonation Transition, 10.2514/3.60874
  52. Lagrée P.-Y., Staron L., Popinet S., The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology, 10.1017/jfm.2011.335
  53. Lebon G., Jou D., Casas-Vázquez J., Understanding Non-equilibrium Thermodynamics, ISBN:9783540742517, 10.1007/978-3-540-74252-4
  54. Lefebvre-Lepot A., Merlet B., Nguyen T. N., An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions, 10.1017/jfm.2015.101
  55. Leighton David, Acrivos Andreas, The shear-induced migration of particles in concentrated suspensions, 10.1017/s0022112087002155
  56. Lhuillier Daniel, Internal variables and the non-equilibrium thermodynamics of colloidal suspensions, 10.1016/s0377-0257(00)00139-7
  57. LYON M. K., LEAL L. G., An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems, 10.1017/s0022112098008817
  58. Massoudi Mehrdad, Constitutive modelling of flowing granular materials: A continuum approach, Granular Materials ISBN:9780854045860 p.63-107, 10.1039/9781847550996-00063
  59. Massoudi Mehrdad, A generalization of Reiner's mathematical model for wet sand, 10.1016/j.mechrescom.2011.05.002
  60. Massoudi M., Mehrabadi M. M., A continuum model for granular materials: Considering dilatancy and the Mohr-Coulomb criterion, 10.1007/bf01176949
  61. Massoudi Mehrdad, Tran Phuoc X., The Couette–Poiseuille flow of a suspension modeled as a modified third-grade fluid, 10.1007/s00419-015-1070-z
  62. Mesri Gholamreza, Vardhanabhuti Barames, Compression of granular materials, 10.1139/t08-123
  63. Mewis Jan, Wagner Norman J., Current trends in suspension rheology, 10.1016/j.jnnfm.2008.11.004
  64. Midi, Eur. Phys. J. E, 14, 341 (2004)
  65. Moraczewski Tracey, Tang Haiying, Shapley Nina C., Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging, 10.1122/1.2079227
  66. Morris Jeffrey F., A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow, 10.1007/s00397-009-0352-1
  67. Morris Jeffrey F., Boulay Fabienne, Curvilinear flows of noncolloidal suspensions: The role of normal stresses, 10.1122/1.551021
  68. Mueller S., Llewellin E. W., Mader H. M., The rheology of suspensions of solid particles, 10.1098/rspa.2009.0445
  69. Nott Prabhu R., Brady John F., Pressure-driven flow of suspensions: simulation and theory, 10.1017/s0022112094002326
  70. Ovarlez Guillaume, Bertrand François, Rodts Stéphane, Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging, 10.1122/1.2188528
  71. Pabst Willi, Gregorová Eva, Berthold Christoph, Particle shape and suspension rheology of short-fiber systems, 10.1016/j.jeurceramsoc.2004.10.016
  72. PAPALEXANDRIS MILTIADIS V., Numerical simulation of detonations in mixtures of gases and solid particles, 10.1017/s0022112004008894
  73. PAPALEXANDRIS MILTIADIS V., A two-phase model for compressible granular flows based on the theory of irreversible processes, 10.1017/s0022112004000874
  74. Passman Stephen L., Nunziato Jace W., Bailey Paul B., Reed Kenneth W., Shearing motion of a fluid‐saturated granular material, 10.1122/1.549894
  75. Phan‐Thien Nhan, Constitutive equation for concentrated suspensions in Newtonian liquids, 10.1122/1.550651
  76. Phung Thanh N., Brady John F., Bossis Georges, Stokesian Dynamics simulation of Brownian suspensions, 10.1017/s0022112096002170
  77. Powers Joseph M., Two-phase viscous modeling of compaction of granular materials, 10.1063/1.1764951
  78. Revil-Baudard T., Chauchat J., A two-phase model for sheet flow regime based on dense granular flow rheology : GRANULAR MODEL FOR SHEET FLOW REGIME, 10.1029/2012jc008306
  79. Samantray Prasant Kumar, Karthikeyan P., Reddy K.S., Estimating effective thermal conductivity of two-phase materials, 10.1016/j.ijheatmasstransfer.2006.03.015
  80. Savage Stuart B., Gravity flow of cohesionless granular materials in chutes and channels, 10.1017/s0022112079000525
  81. Sierou A., Brady J. F., Rheology and microstructure in concentrated noncolloidal suspensions, 10.1122/1.1501925
  82. SINGH ANUGRAH, NOTT PRABHU R., Experimental measurements of the normal stresses in sheared Stokesian suspensions, 10.1017/s0022112003005366
  83. Stickel Jonathan J., Phillips Ronald J., Powell Robert L., A constitutive model for microstructure and total stress in particulate suspensions, 10.1122/1.2209558
  84. Stickel Jonathan J., Phillips Ronald J., Powell Robert L., Application of a constitutive model for particulate suspensions: Time-dependent viscometric flows, 10.1122/1.2790462
  85. Stickel Jonathan J., Powell Robert L., FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS, 10.1146/annurev.fluid.36.050802.122132
  86. Stuhmiller J.H., The influence of interfacial pressure forces on the character of two-phase flow model equations, 10.1016/0301-9322(77)90029-5
  87. Svendsen Bob, Hutter Kolumban, On the thermodynamics of a mixture of isotropic materials with constraints, 10.1016/0020-7225(95)00044-x
  88. Truesdell Clifford, Noll Walter, The Non-Linear Field Theories of Mechanics, ISBN:9783642057014, 10.1007/978-3-662-10388-3
  89. Trulsson Martin, Andreotti Bruno, Claudin Philippe, Transition from the Viscous to Inertial Regime in Dense Suspensions, 10.1103/physrevlett.109.118305
  90. Ván P, Weakly nonlocal continuum theories of granular media: restrictions from the Second Law, 10.1016/j.ijsolstr.2004.05.054
  91. Varsakelis C., Monsorno D., Papalexandris M.V., Projection methods for two velocity–two pressure models for flows of heterogeneous mixtures, 10.1016/j.camwa.2015.06.023
  92. VARSAKELIS C., PAPALEXANDRIS M. V., Low-Mach-number asymptotics for two-phase flows of granular materials, 10.1017/s0022112010005173
  93. Varsakelis Christos, Papalexandris Miltiadis V., A numerical method for two-phase flows of dense granular mixtures, 10.1016/j.jcp.2013.10.023
  94. Varsakelis C., Papalexandris M. V., Stability of wall bounded, shear flows of dense granular materials: the role of the Couette gap, the wall velocity and the initial concentration, 10.1017/jfm.2016.65
  95. Varsakelis, J. Non-Equilib. Thermodyn. (2017)
  96. Wallis, One-Dimensional Two-Phase Flow (1969)
  97. Wang Yongqi, Hutter Kolumban, A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures, 10.1007/s100350050023
  98. Wang Yongqi, Hutter Kolumban, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows, 10.1007/s003970050171
  99. WANG YONGQI, HUTTER KOLUMBAN, SHEARING FLOWS IN A GOODMAN-COWIN TYPE GRANULAR MATERIAL—THEORY AND NUMERICAL RESULTS, 10.1080/02726359908906807
  100. YEO KYONGMIN, MAXEY MARTIN R., Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow, 10.1017/jfm.2011.241
  101. Yurkovetsky Yevgeny, Morris Jeffrey F., Particle pressure in sheared Brownian suspensions, 10.1122/1.2807443
  102. Zarraga Isidro E., Hill Davide A., Leighton David T., The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, 10.1122/1.551083
Bibliographic reference Monsorno, Davide ; Varsakelis, Christos ; Papalexandris, Miltiadis. A two-phase thermomechanical theory for granular suspensions. In: Journal of Fluid Mechanics, Vol. 808, p. 410-440 (December 2016)
Permanent URL http://hdl.handle.net/2078.1/177123