User menu

S'identifier sur le proxy UCLouvain :

S'identifier sur le proxy Saint-Louis :

Strongly Rational Sets for Normal-Form Games

  • Open access
  • PDF
  • 635.57 K
  1. Ambrus Attila, Coalitional Rationalizability*, 10.1162/qjec.121.3.903
  2. Ambrus Attila, Theories of coalitional rationality, 10.1016/j.jet.2007.03.010
  3. Aumann, R.J.: Acceptable points in general cooperative n-person games. In: Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games IV, pp. 287–324. Princeton University Press, Princeton (1959)
  4. Basu Kaushik, Weibull Jörgen W., Strategy subsets closed under rational behavior, 10.1016/0165-1765(91)90179-o
  5. Bernheim B.Douglas, Peleg Bezalel, Whinston Michael D, Coalition-Proof Nash Equilibria I. Concepts, 10.1016/0022-0531(87)90099-8
  6. Herings P.Jean-Jacques, Mauleon Ana, Vannetelbosch Vincent J., Rationalizability for social environments, 10.1016/j.geb.2003.11.003
  7. Hurkens Sjaak, Learning by Forgetful Players, 10.1006/game.1995.1053
  8. Kalai E., Samet D., Unanimity games and Pareto optimality, 10.1007/bf01770226
  9. Kets Willemien, Voorneveld Mark, Learning to be prepared, 10.1007/s00182-008-0121-x
  10. Luo Xiao, Yang Chih-Chun, Bayesian coalitional rationalizability, 10.1016/j.jet.2008.03.004
  11. Voorneveld Mark, Preparation, 10.1016/j.geb.2003.09.006
  12. Voorneveld Mark, Persistent retracts and preparation, 10.1016/j.geb.2004.04.004
Bibliographic reference Grandjean, Gilles J. ; Mauleon, Ana ; Vannetelbosch, Vincent. Strongly Rational Sets for Normal-Form Games. In: Economic Theory Bulletin, Vol. 5, no. 1, p. 35-46 (2017)
Permanent URL