User menu

Using a constraint-based regression method for relative quantification of somatic mutations in pyrosequencing signals: a case for NRAS analysis.

Bibliographic reference Ambroise, Jerome ; Badir, Jamal ; Nienhaus, Louise ; Robert, Annie ; Dekairelle, Anne-France ; et. al. Using a constraint-based regression method for relative quantification of somatic mutations in pyrosequencing signals: a case for NRAS analysis.. In: Algorithms for Molecular Biology, Vol. 11, no.1, p. 24 (2016)
Permanent URL http://hdl.handle.net/2078.1/176924
  1. Ronaghi M., Pyrosequencing Sheds Light on DNA Sequencing, 10.1101/gr.11.1.3
  2. Shen Shanxiang, Qin Dahui, Pyrosequencing data analysis software: a useful tool for EGFR, KRAS, and BRAF mutation analysis, 10.1186/1746-1596-7-56
  3. Skorokhod Alexander, Helmbold Peter, Brors Benedikt, Schirmacher Peter, Enk Alexander, Penzel Roland, Automated Universal BRAF State Detection within the Activation Segment in Skin Metastases by Pyrosequencing-Based Assay U-BRAFV600, 10.1371/journal.pone.0059221
  4. Dufort Sandrine, Richard Marie-Jeanne, de Fraipont Florence, Pyrosequencing method to detect KRAS mutation in formalin-fixed and paraffin-embedded tumor tissues, 10.1016/j.ab.2009.05.027
  5. Ihle Michaela Angelika, Fassunke Jana, König Katharina, Grünewald Inga, Schlaak Max, Kreuzberg Nicole, Tietze Lothar, Schildhaus Hans-Ulrich, Büttner Reinhard, Merkelbach-Bruse Sabine, Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAFmutations, 10.1186/1471-2407-14-13
  6. Cao Hongbao, Duan Junbo, Lin Dongdong, Shugart Yin Yao, Calhoun Vince, Wang Yu-Ping, Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs, 10.1016/j.neuroimage.2014.01.021
  7. Hang Xiyi, Wu Fang-Xiang, Sparse Representation for Classification of Tumors Using Gene Expression Data, 10.1155/2009/403689
  8. Tang W, Duan J, Zhang J-G, Wang Y-P. Subtyping glioblastoma by combining mirna and mrna expression data using compressed sensing-based approach. EURASIP J Bioinform Syst Biol. 2013;2013(2):1–9.
  9. Ambroise J., Piette A.-S., Delcorps C., Rigouts L., de Jong B. C., Irenge L., Robert A., Gala J.-L., AdvISER-PYRO: Amplicon Identification using SparsE Representation of PYROsequencing signal, 10.1093/bioinformatics/btt339
  10. Ambroise J., Deccache Y., Irenge L., Savov E., Robert A., Gala J.-L., Amplicon identification using SparsE representation of multiplex PYROsequencing signal (AdvISER-M-PYRO): application to bacterial resistance genotyping, 10.1093/bioinformatics/btu516
  11. Ambroise Jérôme, Butoescu Valentina, Robert Annie, Tombal Bertrand, Gala Jean-Luc, Multiplex pyrosequencing assay using AdvISER-MH-PYRO algorithm: a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated SNPs, 10.1186/s12881-015-0186-x
  12. Jakob John A., Bassett Roland L., Ng Chaan S., Curry Jonathan L., Joseph Richard W., Alvarado Gladys C., Rohlfs Michelle L., Richard Jessie, Gershenwald Jeffrey E., Kim Kevin B., Lazar Alexander J., Hwu Patrick, Davies Michael A., NRAS mutation status is an independent prognostic factor in metastatic melanoma, 10.1002/cncr.26724
  13. Schirripa Marta, Cremolini Chiara, Loupakis Fotios, Morvillo Manfredi, Bergamo Francesca, Zoratto Federica, Salvatore Lisa, Antoniotti Carlotta, Marmorino Federica, Sensi Elisa, Lupi Cristiana, Fontanini Gabriella, Gregorio Veronica De, Giannini Riccardo, Basolo Fulvio, Masi Gianluca, Falcone Alfredo, Role ofNRASmutations as prognostic and predictive markers in metastatic colorectal cancer : NRASmutations as prognostic and predictive markers in mCRC, 10.1002/ijc.28955
  14. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):49.
  15. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B (Methodological), 1996, 267–88
  16. Tibshirani RJ. Lasso and sparsity in statistics. Statistics in action: a Canadian Outlook. 2014, 79
  17. Goeman J, Meijer R, Chaturvedi N. Penalized: L1 (lasso and fused lasso) and l2 (ridge) penalized estimation in glms and in the cox model. 2012.  http://cran.r-project.org/web/packages/penalized/index.html . Accessed 22 Aug 2016.
  18. Goeman JJ. L1 penalized estimation in the cox proportional hazards model. Biom J. 2010;52(1):70–84.