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Pierre Devolder (Université catholique de Louvain)
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Introduction

Extreme-value theory is the branch of statistics concerned with the character-
ization of extreme events. Extreme events are encountered in a large variety of
fields, such as hydrology, meteorology, finance, and insurance, but also in less
obvious settings like air pollution or athletic records.

Think for instance of the world financial crisis in 2008/2009, often con-
sidered to be the worst financial crash since the 1930s. This crisis is sometimes
partly blamed on the so-called Gaussian copula model, also referred to as “the
formula that killed Wall Street” (Salmon, 2009). This model, introduced in Li
(2001), is intended for dependence modelling of financial objects which before
were considered extremely difficult to price. It relies entirely on the Gaussian
distribution, and thus on the concept of correlation, destined to measure de-
pendence between financial instruments around their mean values. However, a
Gaussian structure cannot properly account for tail dependence, that is, it does
not account for the joint occurrence of (very) extreme losses on these financial
objects. It is exactly due to strong tail dependence that financial instruments
often crash jointly. Moreover, financial crashes tend to be more severe and
more frequent over the last decades, which is inevitably due to increasingly
refined financial instruments that are strongly connected to one another.

An increase in the frequency and magnitude of (joint) extreme events cannot
only be seen in finance, but also in the environment, where extreme weather
conditions such as heat waves, floods and hurricanes are often linked to the
concept of global warming. Consider for example the 1953 North Sea flood,
leading to the death of over 2500 people. More than a third of the Netherlands
is below sea level, which is why the country relies heavily on its dykes. In
February 1953, dykes were breached all along the coast and almost 2000 people
got killed. This was the direct motivation to the construction of the Delta
Works, an intricate system of dams and storm surge barriers, and one of the
first large scale extreme value projects. The heights of the dykes were calculated
such that the probability of exceeding at least one of the dykes is sufficiently
low, which in case of the Delta Works is defined to be a one in a ten thousand
year event.

Although the two examples above seem to concern quite different situations,
estimating the probability of a future joint stock crash or of a dyke breach
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requires the same mathematical toolbox. In classical statistical theory, it is
often the behaviour of the mean or average that is of interest. However, for
heavy-tailed data, to which financial returns usually belong, the second moment
or even the mean might be infinite, so that the classical theory based on the
normal distribution is no longer relevant. Moreover, we will often want to
estimate the probability of an event more severe than the ones we saw in the
past: for instance, we are aiming to define the height of a dyke such that it is
breached once every ten thousand years on average, with only a hundred years
of data available.

The exact definition of an extreme event varies with the application one
has in mind: in the above examples, an event is called extreme during the
financial crisis if many stocks crash at the same time, whereas an extreme
flood event is one where at least one of the dykes is breached. Moreover, when
selecting extreme events, several strategies are possible: one might select the
maxima over a certain fixed time span, e.g., yearly maximum water heights
along the coast, or one might select all values exceeding a large threshold, e.g.,
all stock returns with a weekly loss of at least 10%. These concepts will be
made more concrete in the first chapter, which aims at giving an introductory,
though far from exhaustive, overview of the field of extreme value theory: only
the concepts that are necessary to understand the subsequent chapters are
presented, and illustrated with the help of a financial dataset. Section 1.3 is
inspired by the book chapter

Nonparametric estimation of extremal dependence (2016). Kiriliouk, A.,
Segers, J., and Warcho l, M. In: Extreme Value Modelling and Risk Ana-
lysis: Methods and Applications, D. Dey and J. Yan (eds), CRC Press.

Chapter 2 proposes a semi-parametric method for estimating the parameters
of spatial tail dependence models, based on minimizing the distance between
a vector of integrals of parametric pairwise tail dependence functions and the
vector of their empirical counterparts. This method provides an alternative to
the use of (pairwise) likelihood methods, that are difficult to handle for large
dimensions. This chapter is based on the paper

Einmahl, J.H., Kiriliouk, A., Krajina, A., and Segers, J. (2016a). An
M-estimator of spatial tail dependence. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(1):275–298.

Chapter 3 proposes an estimator which is more flexible than the one from
Chapter 2: instead of comparing vectors of integrals, one compares vectors of
tail dependence functions evaluated at finitely many points to any nonpara-
metric estimator thereof, allowing to go beyond the pairwise setting and reach
even higher dimensions. Moreover, we do not restrict our attention to spatial
models, but illustrate the performance of the estimator on a non-differentiable
model defined on a directed graph. This chapter is based on
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Einmahl, J.H., Kiriliouk, A., and Segers, J. (2016b). A continuous up-
dating weighted least squares estimator of tail dependence in high dimen-
sions. Available at http://arxiv.org/abs/1601.04826.

Chapter 5 introduces multivariate generalized Pareto distributions, leading
to the multivariate analogue of the peaks-over-threshold method introduced in
Subsection 1.2.2. Contrary to the methods proposed in Chapters 2 and 3, we
make inference using censored maximum likelihood estimation. An application
aimed at the modelling of landslides in northern Sweden is presented. This
chapter, which starts with a summary of the results in Rootzén, Segers, and
Wadsworth (2016), corresponds to a paper in preparation, jointly with Holger
Rootzén, Johan Segers, and Jennifer Wadsworth.

Chapter 6 treats a quite different subject, focusing on the modelling of
dependence between joint defaults in credit risk. These defaults are usually
modelled as a linear function depending on a latent factor which is assumed to
follow a normal distribution. We propose to model them instead as a function
of the maximum of two Gumbel-distributed latent variables, and we illustrate
the benefits of our model on a classical credit risk data set provided in Standard
and Poor’s (2001). This chapter is based on the paper

Denuit, M., Kiriliouk, A. and Segers, J. (2015). Max-factor individual risk
models with application to credit portfolios. Insurance: Mathematics and
Economics, 62:162–172.

Finally, the Appendix illustrates the use of the R package tailDepFun, which
implements the estimators proposed in Chapters 2 and 3.

Kiriliouk, A. (2016). tailDepFun: Minimum Distance Estimation of Tail
Dependence Models. R package version 1.0.0.
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Chapter 1

Statistics of Extremes

1.1 Preliminaries

Let X be a random variable with distribution function F (x) = P[X ≤ x],
denoted X ∼ F . The quantile function is

F−1(q) = inf {x : F (x) ≥ q} .

Let F (x) = 1 − F (x) denote the survival function. Let X1, . . . , Xn be inde-
pendent and identically distributed (iid) copies of X. The rank of Xi among
X1, . . . , Xn is denoted by Ri,n and is defined as

Ri,n :=

n∑
l=1

1 {Xl ≤ Xi} . (1.1.1)

The empirical distribution function F̃n is defined as

F̃n(x) :=
1

n

n∑
i=1

1 {Xi ≤ x} .

When focusing on the ranks of a sample, we will usually use a modified version
of the empirical distribution function, given by

F̂n(x) :=
1

n

(
n∑
i=1

1 {Xi ≤ x} − 1

)
. (1.1.2)

Let
d→ denote convergence in distribution and let

d
= denote equality in dist-

ribution. Write [x]+ = max(x, 0). For a set A, let ∂A denote its boundary
and |A| its cardinality. Throughout, we use bold symbols for d-variate vectors,
e.g., X = (X1, . . . , Xd) and a = (a1, . . . , ad) ∈ Rd. All operations involving
vectors should be interpreted componentwise, e.g., aX = (a1X1, . . . , adXd).
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The cumulative distribution function and the density function of a d-variate
normal random variable with mean 0 and covariance matrix Σ are denoted by
Φd( · ; Σ) and φd( · ; Σ) respectively. Finally, let ∆d−1 denote the unit simplex
defined by

∆d−1 := {w ∈ [0,∞)d : w1 + · · ·+ wd = 1}.
Let X be a random vector in Rd with marginal distribution functions

Fj(xj) = P[Xj ≤ xj ] for j ∈ {1, . . . , d} and joint distribution function F (x) =
P[X1 ≤ x1, . . . , Xd ≤ xd]. If the margins F1, . . . , Fd are continuous, then
the copula of X is defined as the joint cumulative distribution function of
F1(X1), . . . , Fd(Xd) and is denoted by C:

C(u) := P[F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud], u ∈ [0, 1]d.

The copula C, which has uniform margins, is used to describe the dependence
structure of X. Sklar’s theorem (Sklar, 1959) states that every multivariate
distribution function F of a random vector X with continuous margins can be
expressed in terms of its marginal distribution functions and a unique copula
C,

F (x) = P[F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)] = C(F1(x1), . . . , Fd(xd)).

Conversely, because we assumed the margins to be continuous,

C(u) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
, u ∈ [0, 1]d.

A point process is a stochastic rule for the occurrence and position of point
events. If {Xi}i≥1 denotes a collection of points occurring in a space X ⊂ Rd,
then a point process N counts the number of points on subsets of X ,

N(A) =
∑
i≥1

1 {Xi ∈ A} , A ⊂ X .

The best known point process is the Poisson process. Let ν be a Borel measure
on X , finite for any compact A ⊂ X . Then N is a Poisson process on X with
intensity measure ν if

1. For k ∈ N and A1, . . . ,Ak ⊂ X disjoint, N(A1), . . . , N(Ak) are independ-
ent random variables.

2. N(A) has a Poisson distribution with mean ν(A).

The quantity ν(A) can be interpreted as the expected number of points of the
Poisson process located in A, i.e., ν(A) = E[N(A)]. If (Ni)i≥1 is a sequence of
point processes on A, we say that the sequence converges in distribution to a
point process N , denoted

Nn
d→ N, as n→∞,

if for every m ∈ N and for all bounded sets A1, . . . ,Am ⊂ X with P[N(∂Aj) =
0] = 1 for j = 1, . . . ,m, the joint distribution of (Nn(A1), . . . , Nn(Am)) con-
verges in distribution to (N(A1), . . . , N(Am)).
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1.2 Univariate extremes

1.2.1 Generalized extreme-value distribution

Consider the stock prices of IBM between January 1, 1984, and December
31, 2015, downloaded from http://finance.yahoo.com, and convert them to
weekly negative log-returns: if P1, . . . , Pn is a series of stock prices, the negative
log-returns are

Xi = − log (Pi/Pi−1), i = 2, . . . , n.

By taking negative log-returns we force (extreme) losses to be in the upper
right tail of the distribution function. Figure 1.1 shows the time series of the
stock prices and the weekly negative log-returns.

Weekly stock prices of IBM
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50
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15
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Weekly negative log−returns of IBM

Year
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20

−
10

0
10

20

Figure 1.1: IBM weekly stock prices and negative log-returns.

Let X1, . . . , Xn represent iid copies of a random variable X with continuous
distribution function F . Being interested in the upper right tail means we
wish to study high quantiles of F , i.e., values xq such that F (xq) = 1 − q for
some small q. An intuitive approach would be to estimate F by the empirical
distribution function F̂n and to calculate F̂−1

n (1 − q). However, we are often
interested in events that are more extreme than the ones occurred in the past,
so that the empirical distribution function is of no use. What we need is an
extreme-value analogue of the central limit theorem, leading to a parametric
limiting model for the maximum of a sample instead of the sum.

Consider Mn = max(X1, . . . , Xn). If n is the number of observations in, for
instance, a year, then Mn represents the annual maximum. Then, for F (x) < 1,

P[Mn ≤ x] = Fn(x)→ 0, as n→∞,
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so that the limiting distribution is degenerate. If there exist normalizing se-
quences an > 0, bn ∈ R, such that, as n→∞,

P
[
Mn − bn

an
≤ x

]
= Fn(anx+ bn)

d→ G(x), (1.2.1)

and G is non-degenerate, then F is said to be in the max-domain of attraction
of the generalized extreme-value (GEV) distribution G (Fisher and Tippett,
1928; Gnedenko, 1943). The distribution G has the form

G(x) = exp

{
−
[
1 + ξ

(x− µ)

σ

]−1/ξ

+

}
, x ∈ R.

The parameters µ and σ represent the location and scale respectively. The
parameter ξ is the shape parameter, determining the tail behaviour of the
distribution and the support of G:

ξ > 0 is the heavy-tailed Fréchet case; the support of the GEV distribution is
(µ − σ/γ,∞). The Pareto or log-gamma distributions are in the max-
domain of attraction of a GEV distribution with ξ > 0;

ξ = 0 is the light-tailed Gumbel case; the support of the GEV distribution is
(−∞,∞). The exponential distribution is in the max-domain of attrac-
tion of a GEV distribution with ξ = 0;

ξ < 0 is the bounded-tail Weibull case; the support of the GEV distribution is
(−∞, µ−σ/γ). The beta or uniform distributions are in the max-domain
of attraction of a GEV distribution with ξ < 0.

Example 1.2.1. If X has a unit Pareto distribution, F (x) = 1−1/x for x > 0,
and we set bn = 0 and an = n, then

P [Mn/n ≤ x] = Fn(nx) =

(
1− 1

nx

)n
d−→ exp(−1/x), as n→∞,

so that the unit Pareto distribution is in the max-domain of attraction of the
unit Fréchet distribution.

A related concept is that of max-stability: a distribution G is said to be
max-stable if, for every n ∈ N there exist constants an > 0 and bn ∈ R such
that

Gn(anx+ bn) = G(x), x ∈ R. (1.2.2)

It can be shown that a distribution is max-stable if and only if it is a generalized
extreme-value distribution.

Inference on the tail of F can be made by assuming equality for large enough
n in expression (1.2.1),

P [Mn ≤ x] ≈ G((x− bn)/an) = G0(x),
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where G0 is some other GEV distribution. Then we can proceed as follows.
Divide the data, X1, . . . , Xn, into k blocks of length m, k×m = n, obtaining a
sample Xm,1, . . . ,Xm,k. Calculating the maxima for the m consecutive blocks,
we obtain a sequence of block maxima Mm,1, . . . ,Mm,k to which we can fit a
generalized extreme-value distribution G. Note that we do not need to estimate
the normalization constants an and bn since these are absorbed in the para-
meters of the GEV distribution. The block size is important for the quality of
our estimates: too large a block size will lead to less datapoints and thus to a
higher variance, whereas too small a block size will lead to a bad approxima-
tion by the limiting model and thus to a higher bias. Often, the block size is
guided by the data: for instance, only the yearly maxima might be available.
The parameters (µ, σ, ξ) of G can be then estimated by maximum likelihood
(Smith, 1985; Prescott and Walden, 1980; Bücher and Segers, 2016) or, for in-
stance, an approach using probability-weighted moments (Hosking et al., 1985;
Hosking and Wallis, 2005).

Weekly negative log−returns of IBM

Year
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−
20

−
10

0
10

20

0 10 20 30 40

0.
00

0.
04

0.
08

0.
12

Density and return level of the GEV
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Figure 1.2: Yearly maxima (left) and the density and return level of the estim-
ated GEV distribution (right) for the weekly negative log-returns of IBM.

As an illustration, we extract 32 yearly maxima from the weekly negative
log-returns of the IBM stock prices (shown on the left-hand side of Figure 1.2)
and estimate the parameters of the GEV distribution by maximum likelihood.
We find µ = 7.8 (0.62), σ = 3.0 (0.46), ξ = −0.03 (0.16), with standard errors
in parentheses. Suppose that we are interested in the return level xq, which
satisfies G(xq) = 1− q for small q. We say that 1/q is the return period ; since
the annual maximum exceeds xq in a given year with probability q, we can
say that approximately, xq is expected to be exceeded on average once every
1/q years. If we’re interested in the fifty-year return level, setting 1/q = 50
years gives xq = 19.1 (3.0); we can expect a weekly loss of at least 19.1%
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once every fifty years, with a standard error of 3%. The right-hand side of
Figure 1.2 shows the density function of the estimated GEV distribution with
the fifty-year return level.

1.2.2 Peaks-over-thresholds methods

When restricting ourselves to block maxima, although many extreme events
could have occurred in the same block, only one event per block is recorded. An
alternative is to fix some high threshold u ∈ R and to consider all observations
above u as extreme. This way, we might waste less data than with the block
maxima method. Concretely, we wish to study the limiting distribution of
X−u | X > u. If F is in the max-domain of attraction of a generalized extreme-
value distribution G, then the conditional probability of threshold exceedances
can be written, for x > 0,

P[X ≤ x+ u | X > u] =
F (u+ x)− F (u)

1− F (u)
→ H(x) := 1−

(
1 +

ξx

ηu

)−1/ξ

+

,

(1.2.3)

as u → ∞, where ξ is equal to the shape parameter of the GEV distribution
and ηu = σ + ξ(u− µ) (Balkema and De Haan, 1974; Pickands III, 1975). We
call H the generalized Pareto (GP) distribution. For ξ → 0, we get H(x) =
1− exp(−x/η).

Point processes can be used to derive expression (1.2.3) and to link it to
the GEV distribution. Define a sequence of point processes on R as

Nn =

{
i ∈ {1, . . . , n} :

Xi − bn
an

}
.

This point process can be shown to converge to a Poisson process N , whose
intensity measure can be calculated as follows. For a set A ⊂ R, we have
limn→∞ P[Nn(A) = 0] = exp{−ν(A)} since N(A) follows a Poisson distri-
bution. The intensity measure ν of this point process can then be found by
considering regions of the form A = (x,∞) for x > 0,

lim
n→∞

P[Nn(A) = 0] = lim
n→∞

P
[
X1 − bn
an

≤ x, . . . , Xn − bn
an

≤ x
]

= lim
n→∞

P
[
Mn − bn

an
≤ x

]
= G(x),

so that, for x large enough, the sequence of point processes Nn converges to a
Poisson process with intensity

ν(A) =

[
1 + ξ

(
x− µ
σ

)]−1/ξ

.
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We get for i = 1, . . . , n and x > 0,

H(x) = lim
n→∞

P
[
Xi − bn
an

≤ x
∣∣∣∣ Xi − bn

an
> 0

]
≈ 1− ν{(x,∞)}

ν{(0,∞)}
= 1− logG(x)

logG(0)
, (1.2.4)

which leads directly to (1.2.3).
After having fixed the threshold u, we can fit a GP distribution to the

threshold exceedances through maximum likelihood estimation (Davison and
Smith, 1990). Note that the choice of the threshold leads to an analogous
bias-variance trade-off as the choice of the block size for the block maxima
approach. In practice, the threshold is often chosen as a high quantile of the
empirical distribution function of our data, although many advanced methods
on threshold selection are available: see, for instance, Scarrott and MacDonald
(2012) for a review.

Weekly negative log−returns of IBM

Year
1985 1995 2005 2015

−
10
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20
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0.
00
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20
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30

Density and return level of the GPD

x

Figure 1.3: Threshold exceedances above u = 7.06 (left) and the density and
return level of the estimated GP distribution (right) for the weekly negative
log-returns of IBM.

When fitting a GP distribution, we assume that our data are independent,
which is a reasonable assumption since we chose weekly log-returns. Let u
be the 97% quantile of X1, . . . , Xn, u = 7.06. We select the values that are
above u, shown on the left-hand side of Figure 1.3, obtaining k = 51 threshold
exceedances. We estimate the parameters η and ξ by maximum likelihood,
obtaining η̂ = 3.27 (0.67) and ξ̂ = −0.11 (0.15), where standard errors are in
parentheses. If we estimate again the fifty-year return level, we find that we
can expect a loss of at least 18.4% every fifty years with a standard error of
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2.2%. Note that the estimated values for ξ and for the return level are very
similar to the block maxima method. The right-hand side of Figure 1.3 shows
the estimated GP density and the fifty-year return level.

1.3 Multivariate extremes

1.3.1 Tail dependence

Let X = (X1, . . . , Xd) denote a d-variate random variable in Rd with joint dist-
ribution function F and continuous marginal distribution functions F1, . . . , Fd.
Before studying the dependence structure of X, it is useful to eliminate the
influence of marginal aspects so that we can focus on the dependence structure
only. The probability integral transform produces variables F1(X1), . . . , Fd(Xd)
that are uniformly distributed on the interval (0, 1). Large values of Xj cor-
respond to Fj(Xj) being close to unity, whatever the original scale in which
Xj was measured. Recall that this is exactly what is done when studying
copulas. In the extreme-value set-up, it can be useful to magnify large val-
ues, so that we consider a further transformation to unit Pareto margins via
X∗j = 1/{1− Fj(Xj)} for j = 1, . . . , d.

In practice, the marginal distributions are unknown and need to be estim-
ated. This can be done parametrically, by fitting a GEV or GP distribution to
block maxima or threshold excesses, after which the parameter estimates are
used to transform the marginal variables to a common scale. An alternative is
to estimate the margins nonparametrically, transforming them to unit Pareto
margins by setting

X̂∗ij :=
1

1− F̂n,j(Xij)
, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}. (1.3.1)

The empirical distribution functions F̂n,j evaluated at the data are

F̂n,j(Xij) =
Rij,n − 1

n
, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}; (1.3.2)

where Rij,n is the rank of Xij among X1j , . . . , Xnj ; see (1.1.1) and (1.1.2).
Consider a financial portfolio containing three stocks: JP Morgan, Citibank

and IBM. We again download stock prices from http://finance.yahoo.com

between January 1, 1984, and December 31, 2015, and convert them to weekly
negative log-returns. These series of negative log-returns will be denoted by
the vectors Xi = (Xi1, Xi2, Xi3) for i = 1, . . . , n. We transform them to the
unit Pareto scale using expressions (1.3.1) and (1.3.2). Figure 1.4 shows the
scatterplots of the weekly negative log-returns of JP Morgan versus Citibank
and JP Morgan versus IBM on the unit Pareto scale, plotted on the logarithmic
scale for better visibility. We observe that joint occurrences of large losses are
more frequent for JP Morgan and Citibank (left) than for JP Morgan and
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IBM (right), i.e., JP Morgan and Citibank exhibit a stronger degree of tail
dependence than JP Morgan and IBM. This is no surprise given the fact that
JP Morgan and Citibank are financial institutions while IBM is an IT company.
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Figure 1.4: Scatterplots of weekly negative log-returns of stock prices of JP
Morgan versus Citibank and JP Morgan versus IBM, plotted on the logarithmic
scale.

In order to study tail dependence, we zoom in on the joint distribution of
(F1(X1), . . . , Fd(Xd)) in the neighbourhood of its upper endpoint (1, . . . , 1).
That is, we look at

1− P[F1(X1) ≤ 1− tx1, . . . , Fd(Xd) ≤ 1− txd]
= P[F1(X1) > 1− tx1 or · · · or Fd(Xd) > 1− txd], (1.3.3)

where t > 0 is small and where the numbers x1, . . . , xd ∈ [0,∞) paramet-
rize the relative distances to the upper endpoints of the d variables. The
above probability converges to zero as t → 0. Since the marginal probabil-
ities P[Fj(Xj) > 1− txj ] are equal to txj for all j ∈ {1, . . . , d}, we get that the
probability above is bounded by

max(tx1, . . . , txd) ≤ P[F1(X1) > 1− tx1 or · · · or Fd(Xd) > 1− txd]
≤ tx1 + · · ·+ txd.

We divide by t and obtain the stable tail dependence function, ` : [0,∞)d →
[0,∞), defined by

`(x) := lim
t↓0

t−1P[F1(X1) > 1− tx1 or · · · or Fd(Xd) > 1− txd], (1.3.4)
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for x ∈ [0,∞)d (Huang, 1992; Drees and Huang, 1998). The existence of the
limit in (1.3.4) is an assumption that can be tested for (Einmahl et al., 2006).
Every stable tail dependence function ` has the following properties:

1. max (x1, . . . , xd) ≤ `(x) ≤ x1 + · · ·+ xd. In particular,
`(0, . . . , 0, xj , 0, . . . , 0) = xj for j = 1, . . . , d;

2. convexity, that is, `
(
tx+ (1− t)y

)
≤ t `(x) + (1− t) `(y), for t ∈ [0, 1];

3. order-one homogeneity: `(ax1, . . . , axd) = a `(x1, . . . , xd), for a > 0;

(Beirlant et al., 2004). When d = 2, these three properties characterize the
class of stable tail dependence functions. When d ≥ 3, a function satisfying
these properties is not necessarily a stable tail dependence function (Molchanov,
2008; Ressel, 2013). For any dimension d ≥ 2, the collection of d-variate stable
tail dependence functions is infinite-dimensional. This poses challenges to in-
ference on tail dependence, especially in higher dimensions. The usual way of
dealing with this problem consists of considering parametric models for `, a
number of which are presented in Sections 1.3.4 and 1.4.2.

The probability in (1.3.3) represents the situation where at least one of the
variables is large: for instance, the sea level exceeds a critical height at one or
more coastal locations. Alternatively, we might be interested in the situation
where all variables are large simultaneously. Think of the prices of all stocks in
a financial portfolio going down together. The tail copula, R : [0,∞)d → [0,∞),
is defined by

R(x) := lim
t↓0

t−1P[F1(X1) > 1− tx1, . . . , Fd(Xd) > 1− txd], (1.3.5)

for x ∈ [0,∞)d (Schmidt and Stadtmüller, 2006). Again, existence of the limit
is an assumption. In the bivariate case, the functions ` and R are directly
related by R(x1, x2) = x1 + x2 − `(x1, x2). The difference between ` and R is
visualized in Figure 1.5 for the log-returns of the stock prices of JP Morgan
versus Citibank. From now on, we will focus on the function ` because of its
direct link to the joint distribution function; see (1.3.9).

A random vector X ∈ R2 is said to be asymptotically independent if the
stable tail dependence function assumes its upper bound, `(x1, x2) = x1 + x2,
for all x1, x2 ∈ [0,∞). The opposite case, `(x1, x2) < x1 +x2 for some x1, x2 ∈
[0,∞), is referred to as asymptotic dependence. Sibuya (1960) already observed
that bivariate normally distributed vectors are asymptotically independent as
soon as the correlation is less than unity. We find that in case of asymptotic
independence, we cannot rely on the function ` to quantify the amount of
dependence left above high but finite thresholds.

The best-known measure for the strength of asymptotic dependence of a
random vector X ∈ R2 is the tail dependence coefficient χ, defined as

χ := lim
u↑1
P[F1(X1) > u | F2(X2) > u].
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Figure 1.5: Scatterplots of negative weekly log-returns of stock prices of JP
Morgan versus Citibank, transformed using ranks via (1.3.2). Left: the region
where at least one variable is large, inspiring the definition of the stable tail
dependence function ` in (1.3.4). Right: the region where both variables are
large, inspiring the definition of the tail copula R in (1.3.5).

(Coles et al., 1999). We can write χ as the limit of a function χ(u) such that
limu↑1 χ(u) = χ; the function χ(u) is

χ(u) := 2− P[F1(X1) > u or F2(X2) > u]

1− u
. (1.3.6)

Setting 1−u = t and letting t ↓ 0, we see that χ = 2−`(1, 1) = R(1, 1). By the
properties of `, we have `(x1, x2) = x1 + x2 for all x1, x2 ∈ [0,∞) if and only if
`(1, 1) = 2. That is, asymptotic independence is equivalent to χ = 0, whereas
asymptotic dependence is equivalent to χ ∈ (0, 1]. Before fitting a dataset to
some parametric extreme-value model, we need to make sure the data are not
asymptotically independent, for instance by estimating χ(u) nonparametrically
and investigating its behaviour as u→ 1 (see Section 1.3.2). In case the data are
asymptotically independent, other types of models are needed; see Ledford and
Tawn (1996), Ramos and Ledford (2009), or Wadsworth et al. (2016) among
others.

1.3.2 Nonparametric estimation of tail dependence

Given the random sample X1, . . . ,Xn ∈ Rd, our aim is to estimate the stable
tail dependence function ` in (1.3.4). A straightforward nonparametric estim-
ator can be defined as follows. Let k := kn ∈ {1, . . . , n} be such that k → ∞
and k/n → 0 as n → ∞. Replacing P by the empirical distribution function,
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t by k/n, and F1, . . . , Fd by F̂n,1, . . . , F̂n,d as defined in (1.3.2), we obtain the
empirical tail dependence function (Huang, 1992; Drees and Huang, 1998)

̂̀′(x) :=
n

k

1

n

n∑
i=1

1

{
F̂n,1(Xi1) > 1− kx1

n
or · · · or F̂n,d(Xid) > 1− kxd

n

}

=
1

k

n∑
i=1

1 {Ri1,n > n+ 1− kx1 or · · · or Rid,n > n+ 1− kxd} .

Under minimal assumptions, the estimator is consistent and asymptotically
normal with a convergence rate of

√
k (Einmahl et al., 2012; Bücher et al.,

2014). Alternatively, an estimator with slightly better finite-sample properties
(Einmahl et al., 2012) is

̂̀(x) :=
1

k

n∑
i=1

1 {Ri1,n > n+ 1/2− kx1 or · · · or Rid,n > n+ 1/2− kxd} .

To estimate χ(u) from a sample (X11, X12), . . . , (Xn1, Xn2), simply replace
P, F1 and F2 by their empirical counterparts in (1.3.6),

χ̂(u) := 2−
1− 1

n

∑n
i=1 1

{
F̂n,1(Xi1) ≤ u, F̂n,2(Xi2) ≤ u

}
1− u

. (1.3.7)

We will use this estimator in Section 1.3.4 to quantify the amount of dependence
between our series of weekly negative log-returns.

A way to visualize the function ` or an estimator thereof in two dimensions
is via the level sets Dc := {(x1, x2) : `(x1, x2) = c} for a range of value of c > 0.
Note that the level sets are between the lines x1 +x2 = c and the elbow curves
max(x1, x2) = c. Likewise, a plot of the level sets of an estimator of ` can be
used as a graphical diagnostic of asymptotic (in)dependence; see de Haan and
de Ronde (1998) or de Haan and Ferreira (2006, Section 7.2).

We plot the lines Dc for c ∈ {0.2, 0.4, 0.6, 0.8, 1} and k = 50 of ̂̀n,k for
the weekly negative log-returns of JP Morgan versus Citibank and JP Mor-
gan versus IBM in Figure 1.6. The grey lines represent x1 + x2 = c and
max(x1, x2) = c. The level sets for JP Morgan versus IBM resemble the
straight lines x + y = c much more closely than the level sets for JP Morgan
versus Citibank do. There are several formal approaches to test for asymptotic
(in)dependence; see for instance Draisma et al. (2004) or Hüsler and Li (2009).

Other nonparametric estimation methods for tail dependence can be found
in Gudendorf and Segers (2011), Gudendorf and Segers (2012), or Marcon
et al. (2016), among others. Nonparametric estimators for ` can also serve as a
stepping stone for semiparametric inference. Assume that ` ∈ {`θ : θ ∈ Θ} for
some Θ ⊂ Rp, a finite-dimensional parametric family. Then one could estimate
θ by minimizing a distance or discrepancy measure between ̂̀n,k and members
of the parametric family. This is the subject of Chapters 2 and 3.
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Figure 1.6: Level sets Dc of ̂̀n,k(x1, x2) for c ∈ {0.2, 0.4, 0.6, 0.8, 1} for the
weekly negative log-returns of JP Morgan versus Citibank (left) and JP Morgan
versus IBM (right).

1.3.3 Multivariate maxima, point processes and the ex-
ponent measure

In our treatment of tail dependence thusfar we have not mentioned taking
maxima, although this was our primary approach in the univariate case. We
now present the analogue of a univariate generalized extreme-value distribution,
and show how it is linked to the stable tail dependence function.

Let Mn = (Mn,1, . . . ,Mn,d) with Mn,j := max(X1,j , . . . , Xn,j) for j =
1, . . . , d denote the componentwise maxima. Note that these do not necessarily
correspond to existing data points. On the left-hand side of Figure 1.7 the
yearly componentwise block maxima of JP Morgan and Citibank are shown.
If there exist sequences of normalizing constants an = (an1, . . . , and) > 0 and
bn = (bn1, . . . , bnd) ∈ Rd such that,

P
[
Mn − bn
an

≤ x
]

= Fn (anx+ bn)
d−→ G(x), as n→∞, (1.3.8)

and G is non-degenerate, then G is a multivariate generalized extreme-value
distribution, and F is said to be in the max-domain of attraction of G. This
implies that the marginal distribution functions F1, . . . , Fd converge to univari-
ate extreme-value distributions as well. Note that G possesses a multivariate
version of the max-stability property we saw in (1.2.2).

Recall the transformation of the random variables X1, . . . , Xj to the unit
Pareto distribution via X∗j = 1/{1−Fj(Xj)} for j = 1, . . . , d. The existence of `
in (1.3.4) is equivalent to the statement that the joint distribution function, F∗,
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of the random vector X∗ = (X∗1 , . . . , X
∗
d ) is in the max-domain of attraction of

a d-variate extreme-value distribution, say G∗, with unit Fréchet margins (see
Example 1.2.1). The link between ` and G∗ is given by

`(x) = lim
n→∞

n {1− F∗(n/x1, . . . , n/xd)}

= lim
n→∞

− logFn∗ (n/x1, . . . , n/xd)

= − logG∗(1/x1, . . . , 1/xd),

where the first line is obtained by rewriting expression (1.3.4) in unit Pareto
random variables. We find that G∗(z) = exp {−`(1/z1, . . . , 1/zd)}. Since, for
“large” z1, . . . , zd we have

F∗(z) ≈ exp

{
− 1

n
`

(
n

z1
, . . . ,

n

zd

)}
= exp

{
−`
(

1

z1
, . . . ,

1

zd

)}
, (1.3.9)

we see that estimating the stable tail dependence function ` is key to estimation
of the tail of F∗, and thus, after marginal transformation, of F . If, in addition
to the existence of `, the marginal distributions F1, . . . , Fd are in the max-
domains of attraction of the univariate extreme-value distributions G1, . . . , Gd,
then F is in the max-domain of attraction of the extreme-value distribution

G(x) = exp{−`(− logG1(x1), . . . ,− logGd(xd))}, x ∈ Rd. (1.3.10)

Relation (1.3.8) is equivalent to relation (1.3.4) and convergence of the d mar-
ginal distributions in (1.3.8). As a consequence, (1.3.4) is substantially weaker
than (1.3.8), since it only concerns the copula C corresponding to F ,

`(x) = lim
t↓0

1− C(1− tx1, . . . , 1− txd)
t

, x ∈ [0,∞)d. (1.3.11)

The class of distribution functions satisfying (1.3.4) is hence much larger than
the class of functions satisfying the multivariate max-domain of attraction con-
dition (1.3.8). It contains, for instance, all distributions of the form F (x) =
F1(x1) · · ·Fd(xd) with continuous margins, even if some of those margins do
not belong to the max-domain of attraction of a univariate GEV distribution.
Note also that if F is already an extreme-value distribution, then it is attracted
by itself.

As in the univariate case, we can use point processes to express the above
results. Suppose that F is in the max-domain of attraction of a multivariate
GEV distribution G with margins G1, . . . , Gd. Let l denote the vector of mar-
ginal lower endpoints, i.e., lj is the lower endpoint of Gj for j ∈ {1, . . . , d}.
Consider the point processes Nn on [l,∞), defined as

Nn =

{
i ∈ {1, . . . , n} : max

(
Xi − bn
an

, l

)}
. (1.3.12)
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Then it can be shown (Resnick, 1987) that this sequence of point processes
converges in distribution to a Poisson process N . For A = [l,∞] \ [l, z], we
have, for z > l,

lim
n→∞

P[N(A) = 0] = lim
n→∞

P [max(X1, . . . ,Xn) ≤ anz + bn] = G(z).

The intensity measure of this limiting Poisson process is usually called the
exponent measure (Balkema and Resnick, 1977) and denoted by µ: it is defined
by

µ([l,∞) \ [l, z]) = − logG(z), z ∈ [l,∞] \ {l}. (1.3.13)

For a connection with the stable tail dependence function, we recall that
`(x) = − logG∗(1/x), where G∗ is a GEV distribution with unit Fréchet mar-
gins. Considering expression (1.3.13) for G∗, we get l = 0 and thus

`(x) = µ([0,∞) \ [0,1/x]), x ∈ [0,∞) \ {0}.

Note that we can rewrite the stable tail dependence function in terms of the
unit Pareto random variable X∗ as

`(x) = lim
n→∞

nP [X∗/n ∈ [0,∞] \ [0,1/x]] ,

so that the exponent measure satisfies nP[X∗/n ∈ · ] → µ( · ) as n → ∞; we
recognize the point processes Nn in (1.3.12) with an = n and bn = 0. The
stable tail dependence functions thus acts as a distribution function for the
exponent measure.

In the subsequent chapters, we will sometimes work with a measure Λ ob-
tained from µ after the transformation x 7→ 1/x. The relation between Λ and
` is given by

`(x) = Λ
({
w ∈ [0,∞]d : w1 ≤ x1 or · · · or wd ≤ xd

})
. (1.3.14)

The measure Λ is also called the exponent measure and it is homogeneous, i.e.,
for all a > 0 and Borel sets A ⊂ [0,∞] \ {∞}, we have Λ(aA) = aΛ(A).

Recall that, contrary to the univariate case, there is no single parametric
family characterizing a d-variate extreme-value distribution; any valid stable
tail dependence function will lead to a GEV distribution. Consequentially, we
will assume a parametric model on `; see Subsections 1.3.4 and 1.4.2 for some
examples. Likelihood-based procedures constitute the most common approach
to estimate tail dependence parameters. However, in high dimensions likelihood
estimation might be difficult because joint densities of parametric models for
multivariate GEV distributions are rarely available in d ≥ 3. This is due to the
exponential in the expression for a GEV distribution G (see (1.3.10)), which
leads to a combinatorial explosion of the number of terms when taking the
derivative: the number of summands of the d-variate density will be equal to
the d-th Bell number. Therefore, one usually resorts to composite likelihood
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approaches; see Varin et al. (2011) for a recent review. Recently, progress has
been made to reduce the number of summands in the density, by including the
occurrence times of the componentwise maxima: see for instance Stephenson
and Tawn (2005) or Wadsworth and Tawn (2014).
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Figure 1.7: Scatterplot of the weekly negative log-returns of stock prices of
JP Morgan versus Citibank, illustrating componentwise yearly block maxima
(left) and threshold exceedances (right).

Alternatively, one could focus on fitting threshold exceedances instead of
componentwise maxima. An observation is considered to be a threshold ex-
ceedance if at least one of its components is large, as illustrated on the right-
hand side of Figure 1.7, although other definitions of a threshold exceedance
are sometimes used as well (Huser et al., 2015). The most common approach
is to build a likelihood from the Poisson process approximation (1.3.12) (Coles
and Tawn, 1991). To make better use of the data points with some non-extreme
components, a threshold censored likelihood is often used, where the compon-
ents falling below the threshold u are censored at u, i.e., we assume that they
fall somewhere between their lower boundary and u rather than using their
true values (Ledford and Tawn, 1996; Smith et al., 1997). In Chapter 5, we
will use a threshold censored likelihood when estimating the parameters of a
multivariate generalized Pareto distribution, which is the multivariate analogue
of a univariate GP distribution.

1.3.4 Parametric tail dependence models

We start by presenting a construction tool for parametric tail dependence mod-
els, known from Segers (2012) and Falk et al. (2010) among others. Let Y ∗

be a unit Pareto random variable and let V be a random vector, independ-
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ent of Y ∗, such that E[Vj ] = 1 for all j = 1, . . . , d. Set Y = (Y1, . . . , Yd) =
(Y ∗V1, . . . , Y

∗Vd). Notice that the margins F1, . . . , Fd of Y are asymptotically
unit Pareto, i.e.,

lim
n→∞

n {1− Fj(n/xj)} = lim
n→∞

E[min(Vjxj , n)] = xj , j ∈ {1, . . . , d}.

Plugging this into expression (1.3.4) for the stable tail dependence function,

`(x) = lim
n→∞

n

{
1− P

[
1− Fj(Xj) ≥

E[min(Vjxj , n)]

n
, j = 1, . . . , d

]}
= lim
n→∞

n {1− P[X1 ≤ n/x1, . . . , Xd ≤ n/xd]}

= lim
n→∞

n

{
1− E

[
1−min

(
max(V1x1, . . . , Vdxd)

n
, 1

)]}
= E[max(V1x1, . . . , Vdxd)] (1.3.15)

Note that in Ferreira and de Haan (2014) a similar construction recipe is pro-
posed for so-called Pareto processes, but with the constraint P[maxj=1,...,d Vj =
1] = 0 instead of E[Vj ] = 1 for j = 1, . . . , d. Expression (1.3.15) can be used to
construct a large variety of tail dependence models.

Example 1.3.1 (Logistic model). Let Γ( · ) denote the gamma function. If,
for j = 1, . . . , d,

Vj =
Aj

Γ(1− α−1)
, A1, . . . , Ad

iid∼ Fréchet(α),

with α > 1, then we get the logistic model (Aulbach et al., 2015), which was
introduced already in Gumbel (1960). It has stable tail dependence function

`(x) = (x
1/α
1 + · · ·+ x

1/α
d )α, α ∈ (0, 1].

The parameter α measures the dependence between the variables, such that α ↓
0 corresponds to complete dependence and α = 1 corresponds to independence.
In the bivariate case, the tail dependence coefficient is χ = 2− `(1, 1) = 2−2α.
An asymmetric extension of this model is given in Tawn (1990).

Example 1.3.2 (Dirichlet model). Another frequently used model is the Di-
richlet model. Proposed in Coles and Tawn (1991), it can be constructed setting
Aj ∼ Gamma(αj , 1) for j = 1, . . . , d, that is, Aj has density

fj(z) =
zαj−1e−z

Γ(αj)
, z > 0, j ∈ {1, . . . , d}.

Setting Vj = α−1
j Aj , it can be shown (Segers, 2012) that

`(x) =
Γ(
∑d
j=1 αj + 1)∏d
j=1 Γ(αj)

∫
∆d−1

max
j=1,...,d

(
xjvj
αj

) d∏
j=1

v
αj−1
j dv1 · · · dvd−1.
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Complete dependence is obtained when α1 = α2 → ∞, whereas independence
is obtained when α1 = α2 → 0. In the bivariate case, the tail dependence
coefficient is

χ = 1 + Be

(
α1 + 1, α2;

α1

α1 + α2

)
− Be

(
α1, α2 + 1;

α1

α1 + α2

)
,

where Be denotes the regularized incomplete Beta function defined by

Be(α1, α2; v) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ v

0

wα1−1(1− w)α2−1 dw.

Example 1.3.3 (Max-linear model). The parameters of the models in Ex-
amples 1.3.1 and 1.3.2 can be estimated using maximum likelihood techniques.
However, maximum likelihood is not applicable to non-differentiable extreme-
value models, such as max-linear models. A max-linear model Y with r factors
is constructed by setting

Yj = max
t=1,...,r

ajtZt, j ∈ {1, . . . , d}, (1.3.16)

where Zt are independent unit Fréchet random variables and the ajt are non-
negative constants such that maxj=1,...,d ajt > 0 for every t ∈ {1, . . . , r}. The
stable tail dependence function of Y is

`(y) =

r∑
t=1

max
j=1,...,d

bjtyj , y ∈ [0,∞)d,

where bjt = ajt/
∑r
l=1 ajl for j ∈ {1, . . . , d}. Note that

∑r
t=1 bjt = 1 for every

j ∈ {1, . . . , d}. We will denote the matrix of coefficients as

B =


b11 b12 · · · b1r
b21 b22 · · · b2r
...

...
. . .

...
bd1 bd2 · · · bdr

 ,

and we define the parameter vector θ by stacking the first (r− 1) columns in a
vector, in decreasing order of their sums. Note that θ ∈ Rp where p = d×(r−1).

Many other parametric models exist, see for instance Fougères et al. (2009),
Cooley et al. (2010), or Ballani and Schlather (2011).

Consider the 32 componentwise yearly block maxima for the JP Morgan
versus Citibank and the JP Morgan versus IBM weekly negative log-returns.
Before fitting a parametric dependence model, we need to check if our data
is asymptotically dependent, since our models are of no use when `(x1, x2) =
x1 + x2. The left-hand side of Figure 1.8 shows the estimated tail dependence
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coefficients χ̂(u) for the weekly negative log-returns of JP Morgan versus Citi-
bank and JP Morgan versus IBM, as a function of u ≥ 0.8; see (1.3.7). We
conclude that JP Morgan versus IBM might be asymptotically independent,
which is in line with what we saw in Figure 1.6, and we demonstrate the para-
metric models presented in Examples 1.3.1 and 1.3.2 on the JP Morgan versus
Citibank data only.

Let Mk,n = (Mk,n,1,Mk,n,2) for k ∈ {1, . . . , 32} denote the componentwise
yearly block maxima of JP Morgan versus Citibank. We first transform the
margins to unit Fréchet random variables by fitting univariate GEV distribu-
tions to the block maxima M1,n,j , . . . ,M32,n,j , obtaining parameter estimates
(µj , σj , ξj) for j ∈ {1, 2}, and setting

X̃ij =

{
1 + ξ̂j

(
Mi,n,j − µ̂j

σ̂j

)}1/ξ̂j

, i ∈ {1, . . . , 32}, j ∈ {1, d},

since the multivariate GEV distribution G∗(z) = exp{−`(1/z1, . . . , 1/zd)} is
assumed to have unit Fréchet margins. Then we fit a bivariate logistic model

and a bivariate Dirichlet model to the data X̃1, . . . , X̃32. We find α̂ = 0.41
(0.08) for the logistic model and α̂1 = 1.52 (1.28) and α̂2 = 3.9 (6.1) for the
Dirichlet model. The Akaike information criterion (AIC) is 254.7 and 258.2
respectively, so that we prefer the logistic model over the Dirichlet model. The
tail dependence coefficients obtained by plugging in the parameter estimates
are given by χ̂ = 0.68 for the logistic model and χ̂ = 0.64 for the Dirichlet
model, which is in line with the left-hand side of Figure 1.8.
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Figure 1.8: Estimators χ̂(u) for the JP Morgan versus Citibank and the JP
Morgan versus IBM weekly negative log-returns (left) and the return-level plot
for a joint crash of JP Morgan and Citibank.
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Suppose now we are interested in the scenario where both stock returns are
large simultaneously, i.e., we are interested in the event that the minimum of
the two componentwise maxima is large. We set Zk = min(Mk,n,1,Mk,n,2)
for k ∈ {1, . . . , 32} and we notice that we can use univariate methods on
Z1, . . . , Z32 to calculate returns levels. The right-hand side of Figure 1.8 shows
a return level plot for this quantity. The fifty-year return level is 50.1 with a
standard error of 23.4, i.e., we expect that both JP Morgan and Citibank have
a weekly loss of at least 50.1% once every fifty years. The plot illustrates that
extrapolating beyond the range of the data will necessarily lead to enormous
confidence intervals.

1.4 Spatial extremes

1.4.1 Max-stable processes

Max-stable processes arise in the study of componentwise maxima of random
processes rather than of random vectors. This is of interest in the spatial
setting, where wave heights, precipitation amounts or temperatures occur con-
tinuously over a certain geographical region. Let S be a compact subset of
R2, and let C(S) denote the space of continuous, real-valued functions on S,
equipped with the supremum norm ‖f‖∞ = sups∈S |f(s)| for f ∈ C(S). In the
applications that we have in mind, S will represent the region of interest. Con-
sider independent copies {Xi(s)}s∈S for i ∈ {1, . . . , n} of a process {X(s)}s∈S
in C(S). Then X is in the max-domain of attraction of the max-stable process
Y if there exist sequences of continuous functions an(s) > 0 and bn(s) such
that{

maxi=1,...,nXi(s)− bn(s)

an(s)

}
s∈S

w→ {Y (s)}s∈S , as n→∞, (1.4.1)

where
w→ denotes weak convergence in C(S); see de Haan and Lin (2001) for a

full characterization of max-domain of attraction conditions for the case S =
[0, 1].

A max-stable process Y is called simple and denoted by Y ∗ if its marginal
distribution functions are all unit Fréchet. Its finite-dimensional distributions
P[Y (s1) ≤ y1, . . . , Y (sd) ≤ yd] are d-dimensional multivariate extreme-value
distributions. In de Haan (1984) it was shown that a process Y on S with unit
Fréchet margins is simple max-stable if and only if it has the representation

Y ∗(x) = max
i∈N

ξiVi(s), s ∈ S, (1.4.2)

where {ξi}i≥1 denote the points of a Poisson process on (0,∞) with intensity
measure ξ−2 dξ, i.e., {ξ−1

i }i≥1 are the points of a Poisson process with unit rate,
and {Vi}i≥1 are independent replicates of a nonnegative process V ∈ C(S) with
mean one.
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Smith (1990) offers the following intuition on the above formula. Imagine
a rainfall storm on the region S, such that ξi represents the magnitude of a
storm and ξiVi(s) represents the amount of rainfall for this storm at a location
s ∈ S. Then max-stable processes are the pointwise maxima over the storms
{(ξi, {Vi(s) : s ∈ S}) : i ≥ 1}. The distribution function of Y (s) is

P[Y ∗(s) ≤ y(s)] = exp

{
−E

[
sup
s∈S

(
V (s)

y(s)

)]}
, s ∈ S, (1.4.3)

see Schlather (2002). Since

P[Y ∗(s1) ≤ yd, . . . , Y ∗(sd) ≤ yd] = exp {−`(1/y1, . . . , 1/yd)} ,

we recognize in (1.4.3) the continuous analogue of the construction device
presented in (1.3.15). Note that we assumed S ⊂ R2 for convenience only:
we could have set S ⊂ R3, for instance when considering spatial processes
in three dimensions or when studying space-time processes, where the third
coordinate represents time.

Some terminology used in the analysis of spatial extremes comes from the
field of geostatistics. There, the process X(s) is often modelled as the sum
of a non-random mean function and a zero-mean Gaussian process ε(s). A
Gaussian process ε is called second-order stationary if

Cov[ε(s1), ε(s2)] = Cov[ε(s1 + h), ε(s2 + h)], s1, s2,h ∈ R2,

and it is isotropic if its covariance function C is a function of distance only,
i.e.,

Cov[ε(s), ε(s+ h)] = C(‖h‖), s,h ∈ R2.

Finally, any second-order stationary and isotropic random field is characterized
by its semi-variogram

γ(h) =
Var [ε(x+ h)− ε(x)]

2
=
E
[
(ε(x+ h)− ε(x))2

]
2

, x,h ∈ R2.

See for more background Davison and Gholamrezaee (2012) or Cooley et al.
(2012a).

Inference on max-stable processes is similar to inference on multivariate
GEV distributions, since in practice the number of observed locations d is
finite and brings us back to the ordinary multivariate setting. The reason
that we need the stochastic processes framework is that one will usually want
to extrapolate beyond the locations s1, . . . , sd, for instance, to make weather
predictions on sites with no measurement stations.

It is common to transform the marginal distributions to unit Fréchet ran-
dom variables, and to fit a max-stable model to componentwise block maxima
using likelihood methods. Multivariate models such as the ones presented in
Examples 1.3.2 and 1.3.3 are rarely used in very high dimensions because of



34 Chapter 1. Statistics of Extremes

the quickly growing number of parameters, whereas the spatial dependence
models presented in Example 1.4.1 and 1.4.2 are designed to have a limited
number of parameters. This is important since spatial data are often gathered
from hundreds of measuring stations. Thus, it is even more important that the
estimation method we use is adequate in very high dimensions, which is why
one is usually limited to composite (pairwise or triplewise) likelihoods, used
in either a frequentist (Padoan et al., 2010; Davison et al., 2012; Huser and
Davison, 2013) or a Bayesian setting (Reich and Shaby, 2012; Cooley et al.,
2012b). Alternatively, Yuen and Stoev (2014) propose an M-estimator based
on finite-dimensional cumulative distribution functions. Very recently, higher-
order likelihood inference has been introduced as well (Castruccio et al., 2016;
Thibaud et al., 2015). Note that joint likelihood inference, i.e., estimation of
the dependence structure and the marginal parameters simultaneously, is rarely
feasible due to the high number of parameters to estimate.

Estimation using threshold exceedances is only a recent topic within the
context of spatial extremes, and is usually done using a threshold censored like-
lihood similar to the multivariate case (Wadsworth and Tawn, 2014; Thibaud
et al., 2015; Thibaud and Opitz, 2015); for more examples, see Section 2.1.

1.4.2 Parametric models for spatial tail dependence

Although in theory many processes V ∈ C(S) with mean one lead to valid
models, whose stable tail dependence function is obtained by calculating ex-
pression (1.4.3), only a handful of models are used in practice since calculation
of expression (1.4.3) needs to be feasible for dimensions much higher than two.
We present the two best-known examples.

Example 1.4.1 (Gaussian extreme-value process). We will start by charac-
terizing the Gaussian extreme-value process (Smith, 1990), which we will call
simply the Smith model. Let {(ξi, Ui), i ≥ 1} denote the points of a Poisson
process on (0,∞)× R2 with intensity measure ξ−2 dξ du. Then

Y ∗(s) = max
i≥1

ξi φ2(s− Ui; Σ), s ∈ S,

i.e., the process V is a deterministic Gaussian density function. From an ex-
pression similar to (1.4.3) one can calculate the finite-dimensional distributions;
see for instance Schlather (2002). The pairwise stable tail dependence function,
denoted `uv to indicate that it corresponds to the locations su, sv ∈ S, is given
by

`uv(xu, xv) = xuΦ

(
auv
2

+
1

auv
log

xu
xv

)
+ xvΦ

(
auv
2

+
1

auv
log

xv
xu

)
,

where

auv =
√

(su − sv)TΣ−1(su − sv), Σ =

(
σ11 σ12

σ12 σ22

)
.
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The stable tail dependence function for d > 2 is given in Genton et al. (2011).
This model is isotropic if σ11 = σ22 and σ12 = 0.

The three plots on the left of Figure 1.9 show a simulation from the Smith
model, plotted on the logarithmic scale for better visibility. The difference
between the upper and the middle plot is the addition of anisotropy. The
bottom plot shows how decreasing the parameter values affects the model.
Note that complete dependence corresponds to auv → 0 whereas asymptotic
independence corresponds to auv → ∞, so that dependence decreases as the
distance between locations increases. Figure 1.9 clearly shows the deterministic
(Gaussian) shape of this process, which is not very realistic for data applica-
tions.

Example 1.4.2 (Brown–Resnick process). Kabluchko et al. (2009) extend a
model originally proposed in Brown and Resnick (1977) and define the Brown–
Resnick process as

Y ∗(s) = max
i∈N

ξi exp {εi(s)− γ(s)}, s ∈ S,

where {εi( · )}i≥1 are independent copies of a Gaussian process with stationary
increments, ε(0) = 0, variance 2γ( · ), and semi-variogram γ( · ). Note that Y (s)
is a stationary process even if ε(s) is not. Kabluchko et al. (2009) show that
the process with γ(s) = (‖s‖/ρ)α is the only limit of (rescaled) maxima of
stationary and isotropic Gaussian random fields; here ρ > 0 and 0 < α ≤ 2.

Since isotropy may not be a reasonable assumption for many spatial ap-
plications, Blanchet and Davison (2011) and Engelke et al. (2015) introduce a
transformation matrix V defined by

V := V (β, c) :=

[
cosβ − sinβ
c sinβ c cosβ

]
, β ∈ [0, π/2), c > 0, (1.4.4)

and a transformed space S ′ = {V −1s : s ∈ S}, so that an isotropic process on
S is transformed to an anisotropic process on S ′. For s′ ∈ S ′ the anisotropic
Brown–Resnick process is

ZV (s′) := Z(V s′) = max
i∈N

ξi exp {εi(V s′)− γ(V s′)}, (1.4.5)

whose semi-variogram is defined by

γV (s′) := γ(V s′) =

[
s′
T V TV

ρ2
s′
]α/2

.

The pairwise stable tail dependence function `uv, corresponding to locations
s′u, s

′
v ∈ S, is given by

`uv(xu, xv) = xuΦ

(
auv
2

+
1

auv
log

xu
xv

)
+ xvΦ

(
auv
2

+
1

auv
log

xv
xu

)
,
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Figure 1.9: Simulations from the Smith model (left) and the Brown–Resnick
process (right) for different sets of parameter values.
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where auv :=
√

2γV (s′u − s′v). Observe that the choice α = 2 leads to

a2
uv = 2γ(V (s′u − s′v)) = (s′u − s′v)TΣ−1(s′u − s′v), for some Σ =

[
σ11 σ12

σ12 σ22

]
,

where Σ represents any valid 2×2 covariance matrix. The Smith model is thus
a special (smooth) case of the Brown–Resnick process.

The right-hand plots of Figure 1.9 show a simulation of the Brown–Resnick
process. The upper and middle plot illustrate the difference when decreasing
the shape parameter α; the closer α is to zero, the less smooth the process is.
The bottom plot shows a simulation where we used an anisotropy matrix V to
transform the underlying space. We see that the shape of the storms looks less
smooth and therefore more realistic than the one of the Smith model.

Other parametric max-stable processes are the Schlather model, also called
the extremal Gaussian process (Schlather, 2002) and the extremal-t model
(Nikoloulopoulos et al., 2009; Opitz, 2013). Recently, multivariate max-stable
processes have been proposed in Genton et al. (2015), allowing to model mul-
tiple variables at once that have been observed on a set of locations: for in-
stance, rainfall, temperature and wind. They derive a multivariate generaliza-
tion of the Brown–Resnick model.





Chapter 2

An M-estimator of spatial tail
dependence

Abstract

Tail dependence models for distributions attracted to a max-stable
law are fitted using observations above a high threshold. To cope with
spatial, high-dimensional data, a rank-based M-estimator is proposed re-
lying on bivariate margins only. A data-driven weight matrix is used to
minimize the asymptotic variance. Empirical process arguments show
that the estimator is consistent and asymptotically normal. Its finite-
sample performance is assessed in simulation experiments involving pop-
ular max-stable processes perturbed with additive noise. An analysis
of wind speed data from the Netherlands illustrates the method. This
chapter is based on Einmahl, Krajina, Kiriliouk and Segers (2016a).

2.1 Introduction

Max-stable random processes have become the standard for modelling extremes
of environmental quantities, such as wind speed, precipitation, or snow depth.
In such a context, data are modelled as realizations of spatial processes, ob-
served at a finite number of locations. The statistical problem then consists of
modelling the joint tail of a multivariate distribution. This problem can be di-
vided into two separate issues: modelling the marginal distributions and model-
ling the dependence structure. A popular practice is to transform the marginals
into an appropriate form and to fit a max-stable model to componentwise block
maxima using composite likelihood methods; see Subsections 1.3.3 and 1.4.1

As opposed to block maxima, more information can be extracted from
the data by using all data vectors of which at least one component is large.
Threshold-based methods are relatively new in the context of spatial extremes.
A first example is de Haan and Pereira (2006), where several one- and two-
dimensional models for spatial extremes are proposed. Another parametric
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model for spatial tail dependence is introduced in Buishand et al. (2008). In
Huser and Davison (2014), a pairwise censored likelihood is used to analyse
space-time extremes. Another study of space-time extremes can be found in
Davis et al. (2013), where asymptotic normality of the pairwise likelihood es-
timators of the parameters of a Brown–Resnick process is proven for a jointly
increasing number of spatial locations and time points. A numerical study
comparing two distinct approaches for composite likelihoods can be found in
Bacro and Gaetan (2014).

Although all the above approaches are pairwise methods, higher-order in-
ference methods are starting to be developed as well. In Wadsworth and Tawn
(2014), a censored Poisson process likelihood is considered in order to simplify
the likelihood expressions in the Brown–Resnick process and in Engelke et al.
(2015), the distribution of extremal increments of processes that are in the
max-domain of attraction of the Brown–Resnick process is investigated. In
Bienvenüe and Robert (2014), a censored likelihood procedure is used to fit
high-dimensional extreme-value models for which the tail dependence function
has a particular representation. Finally, in Castruccio et al. (2016), extensive
simulations are presented using higher-order composite likelihoods.

The aim of this paper is to propose a new method for fitting multivariate
tail dependence models to high-dimensional data arising for instance in spatial
statistics. No likelihoods come into play as our approach relies on the stable
tail dependence function, and the method is threshold-based in the sense that a
data point is considered to be extreme if the rank of at least one component is
sufficiently high. The only assumption is that the copula corresponding to the
underlying distribution is attracted to a parametrically specified multivariate
extreme-value distribution, see (1.3.11).

By reducing the data to their ranks, the tails of the univariate marginal
distributions need not be estimated. Indeed, the marginal distributions are
not even required to be attracted to an extreme-value distribution. Another
advantage of the rank-based approach is that the estimator is invariant un-
der monotone transformations of the margins, notably for Box–Cox type of
transformations.

Our starting point is Einmahl et al. (2012), where an M-estimator for a para-
metrically modelled stable tail dependence function in dimension d is derived.
However, that method crucially relies on d-dimensional integration, which be-
comes intractable in high dimensions. This is why we consider tail dependence
functions of pairs of variables only. Our estimator is constructed as the min-
imizer of the distance between a vector of integrals of parametric pairwise
tail dependence functions and the vector of their empirical counterparts. The
asymptotic variance of the estimator can be minimized by replacing the Euc-
lidean distance by a quadratic form based on a weight matrix estimated from
the data. In the simulation studies we will consider models in dimensions up
to 100.

We show that our estimator is consistent under minimal assumptions and
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asymptotically normal under an additional condition controlling the growth of
the threshold. In our analysis, we take into account the variability stemming
from the rank transformation, the randomness of the threshold, the random
weight matrix and, in particular, the fact that the max-stable model is only an
approximation in the tail.

A point worth noticing is the generality of our methodology. Where many
studies focus on a specific parametric (tail) model, ours is generic and makes
weak assumptions only. It does not require estimation of the tails of the mar-
ginal distributions, which can be a cumbersome task if the number of variables
is large. Moreover, it allows for estimation of non-differentiable max-stable
models, e.g., spectrally discrete max-stable models (Wang and Stoev, 2011).

For our approach a common, continuous distribution is required. The
method does not apply to count data, for instance, and care must be taken
with environmental variables that exhibit yearly seasonality or a trend, for
instance due to global warming. In our case study, we study data on wind
speeds in the Netherlands over a relatively short time period and limited to
the summer months only.

This chapter is organized as follows. Section 2.2 contains the definition
of the pairwise M-estimator and the main theoretical results on consistency
and asymptotic normality, as well as the practical aspects of the choice of
the weight matrix. In Section 2.3 the anisotropic Brown–Resnick process and
the Smith model are recalled, and we present several simulation studies: two
for a large number of locations, illustrating the computational feasibility of
the estimator in high dimensions, and one for a smaller number of locations,
presenting the benefits of the weight matrix. In addition, we compare the
performance of our estimator to the one proposed in Engelke et al. (2015).
Section 2.4 contains comparisons between our pairwise M-estimator and the
estimator proposed in Einmahl et al. (2012). Finally, in Section 2.5 we present
an application to wind speed data from the Netherlands. Proofs are deferred
to Appendix 2.A. In Appendix 2.B, technical details on the computation of the
asymptotic variance of the estimator are presented. The wind speed data and
the programs that were used for the simulation studies are implemented in the
R package tailDepFun (Kiriliouk, 2016); see also Chapter 4.

2.2 M-estimator

2.2.1 Set-up

Let Xi = (Xi1, . . . , Xid), i ∈ {1, . . . , n}, be independent random vectors in Rd
with continuous distribution function F and marginal distribution functions
F1, . . . , Fd. Suppose that the distribution function of (1/{1−Fj(X1j)})j=1,...,d

is in the max-domain of attraction of the extreme-value distribution with unit
Fréchet margins G∗(z) = exp {−`(1/z1, . . . , 1/zd)}, z ∈ (0,∞)d, which us equi-
valent to the existence of the stable tail dependence function ` : [0,∞)d →
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[0,∞),

`(x) := lim
t↓0

t−1P[F1(X1) > 1− tx1 or · · · or Fd(Xd) > 1− txd], (2.2.1)

for x ∈ [0,∞)d; see Subsection 1.3.3.
From now on we will only assume relation (2.2.1), making no assumptions

on the marginal distributions F1, . . . , Fd except for continuity. Recall that this
is even weaker than the assumption that F belongs to the max-domain of
attraction of a max-stable distribution.

We assume that ` belongs to some parametric family {`( · ;θ) : θ ∈ Θ}, with
Θ ⊂ Rp. Let θ0 denote the true parameter vector, that is, θ0 is the unique
point in Θ such that `(x) = `(x;θ0) for all x ∈ [0,∞)d. The goal is to estimate
the parameter vector θ0.

Let S be a compact subset of R2, representing a spatial region of in-
terest. Consider independent copies {Xi(s)}s∈S for i ∈ {1, . . . , n} of a pro-
cess {X(s)}s∈S in C(S). Then X is in the max-domain of attraction of the
max-stable process Y if there exist sequences of continuous functions an(s) > 0
and bn(s) such that (1.4.1) holds. Although our interest lies in the underly-
ing stochastic processes Xi, data are always obtained on a finite subset of S
only, i.e., at fixed locations s1, . . . , sd. As a consequence, statistical inference
is based on a sample of d-dimensional random vectors. The finite-dimensional
distributions of Y are multivariate extreme-value distributions. This brings us
back to the ordinary, multivariate setting.

2.2.2 Estimation

Recall the empirical tail dependence function defined in Subsection 1.3.2 as

̂̀
n,k(x) :=

1

k

n∑
i=1

1

{
Rni1 > n+

1

2
− kx1 or · · · or Rnid > n+

1

2
− kxd

}
.

For the estimator to be consistent, we need k = kn ∈ {1, . . . , n} to depend on
n in such a way that k →∞ and k/n→ 0 as n→∞.

Let ` = `( · ;θ0), and let g = (g1, . . . , gq)
T : [0, 1]d → Rq with q ≥ p denote a

column vector of integrable functions. In Einmahl et al. (2012), an M-estimator
of θ0 is defined by

θ̂′n := arg min
θ∈Θ

q∑
m=1

(∫
[0,1]d

gm(x)
{̂̀

n,k(x)− `(x;θ)
}

dx

)2

. (2.2.2)

Under suitable conditions, the estimator θ̂′n is consistent and asymptotically
normal. The use of ranks via the empirical stable tail dependence function per-
mits to avoid having to fit a model to the (tails of the) marginal distributions.

However, the approach is ill-adapted to the spatial setting, where data are
gathered from dozens of locations. In high dimensions, the computation of
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θ̂′n becomes infeasible due to the presence of d-dimensional integrals in the
objective function in (2.2.2).

Akin to composite likelihood methods, we opt for a pairwise approach,
minimizing over quadratic forms of vectors of two-dimensional integrals. Let q
represent the number of pairs of locations that we wish to take into account, so
that p ≤ q ≤ d(d−1)/2 and let P denote the sequence of pairs we consider, e.g.,
(u, v) ∈ P. In the spatial setting, the indices u and v correspond to locations
su and sv respectively.

The bivariate margins of the stable tail dependence function `( · ;θ) and its
empirical counterpart are given by

`uv(xu, xv;θ) := `(0, . . . , 0, xu, 0, . . . , 0, xv, 0, . . . , 0;θ),̂̀
n,k,uv(xu, xv) := ̂̀

n,k(0, . . . , 0, xu, 0, . . . , 0, xv, 0, . . . , 0),

respectively. Define L : Θ→ Rq by

L(θ) :=

(∫
[0,1]2

`uv(xu, xv;θ) dxu dxv

)
(u,v)∈P

. (2.2.3)

Consider the random q × 1 column vector

L̂n,k :=

(∫
[0,1]2

̂̀
n,k,uv(xu, xv) dxu dxv

)
(u,v)∈P

,

and set Dn,k(θ) := L(θ) − L̂n,k. Let Ω̂n ∈ Rq×q be a symmetric, positive
definite, possibly random matrix. Define

fn,k,Ω̂n(θ) := Dn,k(θ)T Ω̂nDn,k(θ), θ ∈ Θ.

The pairwise M-estimator of θ0 is defined as

θ̂n := arg min
θ∈Θ

fn,k,Ω̂n(θ) = arg min
θ∈Θ

{
Dn,k(θ)T Ω̂nDn,k(θ)

}
. (2.2.4)

The simplest choice for Ω̂n is just the q × q identity matrix Iq, yielding

fn,k,Iq (θ) = ‖Dn,k(θ)‖2 (2.2.5)

=
∑

(u,v)∈P

(∫
[0,1]2

{̂̀
n,k,uv(xu, xv)− `uv(xu, xv; θ)

}
dxu dxv

)2

.

Note the similarity of this objective function with the one for the original M-
estimator in equation (2.2.2). The role of the matrix Ω̂n is to be able to assign
data-driven weights to quantify the size of the vector of discrepancies Dn,k(θ)
via a generalized Euclidian norm. As we will see in Section 2.2.3, a judicious
choice of this matrix will allow to minimize the asymptotic variance.
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2.2.3 Asymptotic results and choice of the weight matrix

We show consistency and asymptotic normality of the rank-based pairwise M-
estimator. Moreover, we provide a data-driven choice for Ω̂n which minimizes
the asymptotic covariance matrix of the limiting normal distribution. Results
for the construction of confidence regions and hypothesis tests are presented as
well.

Recall the exponent measure Λ, defined in (1.3.14). Let WΛ be a mean-
zero Gaussian process, indexed by the Borel sets of [0,∞]d \ {∞} and with
covariance function

E[WΛ(A1)WΛ(A2)] = Λ(A1 ∩ A2),

where A1, A2 are Borel sets in [0,∞]d \ {∞}. For x ∈ [0,∞)d, define

W`(x) = WΛ({w ∈ [0,∞]d \ {∞} : w1 ≤ x1 or · · · or wd ≤ xd}),
W`,j(xj) = W`(0, . . . , 0, xj , 0, . . . , 0), j = 1, . . . , d.

Let ˙̀
j be the partial derivative of ` with respect to xj , and define

B(x) := W`(x)−
d∑
j=1

˙̀
j(x)W`,j(xj), x ∈ [0,∞)d.

For every pair (u, v) ∈ P, put

Buv(xu, xv) := B(0, . . . , 0, xu, 0, . . . , 0, xv, 0, . . . , 0).

Also define the mean-zero random column vector

B̃ :=

(∫
[0,1]2

Buv(xu, xv) dxu dxv

)
(u,v)∈P

.

The law of B̃ is zero-mean Gaussian and its covariance matrix Γ(θ0) ∈ Rq×q
depends on θ0 via the model assumption ` = `( · ;θ0). Write (u, v) and (u′, v′)
for the i-th and j-th element of P respectively. Then we can obtain the (i, j)-th
entry of Γ(θ) by

Γij(θ) = E[B̃uvB̃u′v′ ]

=

∫
[0,1]4

E [Buv(xu, xv)Bu′v′(xu′ , xv′)] dxu dxv dxu′ dxv′ . (2.2.6)

Assuming θ is an interior point of Θ and L is differentiable in θ, let L̇(θ) ∈ Rq×p
denote the total derivative of L at θ.
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Theorem 2.2.1 (Existence, uniqueness and consistency). Let {`( · ;θ) : θ ∈
Θ}, Θ ⊂ Rp, be a parametric family of d-variate stable tail dependence functions
and let P be a sequence of q distinct pairs, with p ≤ q ≤ d(d− 1)/2, such that
the map L in (2.2.3) is a homeomorphism from Θ to L(Θ). Let the d-variate
distribution function F have continuous margins and stable tail dependence
function `( · ;θ0) for some interior point θ0 ∈ Θ. Let X1, . . . ,Xn be an iid
sample from F . Let k = kn ∈ {1, . . . , n} satisfy k → ∞ and k/n → 0, as
n→∞. Assume also that

(C1) L is twice continuously differentiable on a neighbourhood of θ0 and L̇(θ0)
is of full rank;

(C2) there exists a symmetric, positive definite matrix Ω such that Ω̂n
p−→ Ω

entry-wise.

Then with probability tending to one, the minimizer θ̂n of fn,k,Ω̂n exists and is
unique. Moreover,

θ̂n
p−→ θ0, as n→∞.

Theorem 2.2.2 (Asymptotic normality). If in addition to the assumptions of
Theorem 2.2.1

(C3) t−1P[1− F1(X11) ≤ tx1 or · · · or 1− Fd(X1d) ≤ txd]− `(x;θ0) = O(tα)
uniformly in x ∈ ∆d−1 as t ↓ 0 for some α > 0;

(C4) k = o(n2α/(1+2α)) and k →∞ as n→∞,

then √
k (θ̂n − θ0)

d−→ Np(0,M(θ0))

where, for θ ∈ Θ such that L̇(θ) is of full rank,

M(θ) :=
(
L̇(θ)T Ω L̇(θ)

)−1
L̇(θ)T Ω Γ(θ) Ω L̇(θ)

(
L̇(θ)T Ω L̇(θ)

)−1
. (2.2.7)

The proofs of Theorems 2.2.1 and 2.2.2 are deferred to Appendix 2.A.
An asymptotically optimal choice for the random weight matrix Ω̂n would

be one for which the limit Ω minimizes the asymptotic covariance matrix M(θ0)
with respect to the positive semi-definite partial ordering on the set of sym-
metric matrices. This minimization problem shows up in other contexts as
well, and its solution is well-known: provided Γ(θ) is invertible, the minimum
is attained at Ω = Γ(θ)−1, the matrix M(θ) simplifying to

Mopt(θ) =
(
L̇(θ)T Γ(θ)−1 L̇(θ)

)−1
, (2.2.8)

see for instance Abadir and Magnus (2005, page 339). However, this choice
of the weight matrix requires the knowledge of θ0, which is unknown. One
possible solution consists of computing the optimal weight matrix evaluated at
a preliminary estimator of θ0.
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For θ ∈ Θ, let Hθ be the spectral measure related to `( · ;θ) (de Haan and
Resnick, 1977; Resnick, 1987), a finite measure defined on the unit simplex
∆d−1 which satisfies

`(x;θ) =

∫
∆d−1

max
j=1,...,d

{wjxj}Hθ(dw), x ∈ [0,∞)d.

Corollary 2.2.3 (Optimal weight matrix). In addition to the assumptions of
Theorem 2.2.2, assume the following:

(C5) for all θ in the interior of Θ, the matrix Γ(θ) in (2.2.6) has full rank;

(C6) the mapping θ 7→ Hθ is weakly continuous at θ0.

Assume θ̂
(0)
n converges in probability to θ0 and let θ̂n be the pairwise M-

estimator with weight matrix Ω̂n = Γ(θ̂
(0)
n )−1. Then, with Mopt as in (2.2.8),

we have √
k(θ̂n − θ0)

d−→ Np(0,Mopt(θ0)), n→∞.

For any choice of the positive definite matrix Ω in (2.2.7), the difference
M(θ0)−Mopt(θ0) is positive semi-definite.

In view of Corollary 2.2.3, we propose the following two-step procedure:

1. Compute the pairwise M-estimator θ̂
(0)
n with the weight matrix equal to

the identity matrix, i.e., by minimizing fn,k,Iq in (2.2.5).

2. Calculate the pairwise M-estimator θ̂n by minimizing fn,k,Ω̂n with Ω̂n =

Γ(θ̂
(0)
n )−1.

We will see in Section 2.3.2 that this choice of Ω̂n indeed reduces the estimation
error.

Calculating M(θ) can be a challenging task. The matrix Γ(θ) can become
quite large since for a d-dimensional model, the maximal number of pairs is
d(d− 1)/2. In practice we will choose a smaller number of pairs: we will see in
Section 2.3.2 that this may even have a positive influence on the quality of our
estimator. Appendix 2.B contains details on the calculation and implementa-
tion of the matrix Γ(θ).

A natural competitor of the two-step procedure could be a one-step pro-
cedure where the weight matrix Γ(θ)−1 is recalculated within the minimisation
routine. This resembles, but is substantially different from a continuously up-
dating generalised method of moments (Hansen et al., 1996). Rather than as
in equation (2.2.4), the pairwise M-estimator of θ0 would be defined as the
minimizer of the function

θ 7→ Ln,k(θ)T Γ(θ)−1 Ln,k(θ).
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Calculation of Γ(θ) being time-consuming however, such an approach would
be computationally unwieldy.

Finally, we present results that can be used for the construction of confi-
dence regions and hypothesis tests.

Corollary 2.2.4. If the assumptions from Corollary 2.2.3 are satisfied, then

k(θ̂n − θ0)TM(θ̂n)−1(θ̂n − θ0)
d→ χ2

p, as n→∞.

Let r < p and θ = (θ1,θ2) ∈ Θ with θ1 ∈ Rp−r and θ2 ∈ Rr. Suppose we

want to test θ2 = θ∗2 against θ2 6= θ∗2 . Write θ̂n = (θ̂1n, θ̂2n) and let M2(θ) be
the r × r matrix corresponding to the lower right corner of M(θ).

Corollary 2.2.5. If the assumptions from Corollary 2.2.3 are satisfied and if
θ0 = (θ1,θ

∗
2) ∈ Θ for some θ1, then

k(θ̂2n − θ∗2)TM2(θ̂1n,θ
∗
2)−1(θ̂2n − θ∗2)

d→ χ2
r.

We will not prove these corollaries here, since their proofs are straightfor-
ward extensions of those in Einmahl et al. (2012, Corollary 4.3; Corollary 4.4).

2.3 Spatial models

2.3.1 Theory and definitions

Consider a Brown–Resnick process on S ⊂ R2. Recall that an isotropic process
on S is equivalent to an anisotropic process on S ′ = {V −1s : s ∈ S}, where V
is as in (1.4.4). Recall that the pairwise stable tail dependence function for a
pair (u, v), corresponding to locations s′u, s

′
v ∈ S ′, is given by

`uv(xu, xv) = xuΦ

(
auv
2

+
1

auv
log

xu
xv

)
+ xvΦ

(
auv
2

+
1

auv
log

xv
xu

)
,

where auv :=
√

2γV (s′u − s′v) and the semi-variogram γV is defined by

γV (s′) := γ(V s′) =

[
s′
T V TV

ρ2
s′
]α/2

, α ∈ (0, 2], ρ > 0,

for s′ ∈ S ′. We will present simulation studies for processes in the domain of at-
traction, in the sense of (2.2.1), of both the Smith model (α = 2) and the aniso-
tropic Brown–Resnick process. The parameter vectors are θ = (α, ρ, β, c) and
θ = (σ11, σ22, σ12) respectively; see Subsection 1.4.2. To calculate the weight
matrix Γ(θ)−1, we will need to compute integrals over the four-dimensional
margins of the stable tail dependence function, see (2.2.6) and Appendix 2.B.
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In Huser and Davison (2013) the following representation is given for `(x;θ)
for general d. If ZV is defined as in (1.4.5) then for su1

, . . . , sud ∈ S ⊂ R2,

`u1,...,ud(x) =

d∑
j=1

xjΦd−1(ζ(j)(1/x); Υ(j)),

where ζ(j)(1/x) ∈ Rd−1 and

ζ(j)(x) = (ζ
(j)
1 (x1, xj), . . . , ζ

(j)
j−1(xj−1, xj), ζ

(j)
j+1(xj+1, xj), . . . , ζ

(j)
d (xd, xj)),

ζ
(j)
j (xi, xj) =

√
γV (suj − sui)

2
+

log (xi/xj)√
2γV (suj − sui)

,

and Υ(j) ∈ R(d−1)×(d−1) is the correlation matrix with entries

Υ
(j)
ik =

γV (suj − sui) + γV (suj − suk)− γV (sui − suk)

2
√
γV (suj − sui)γV (suj − suk)

,

for i, k = 1, . . . , d; i, k 6= j.

2.3.2 Simulation studies

In order to study the performance of the pairwise M-estimator when the un-
derlying distribution function F satisfies (2.2.1) for a function ` corresponding
to the max-stable models described before, we generate random samples from
Brown–Resnick processes and Smith models perturbed with additive noise. If
Y = (Y1, . . . , Yd) is a max-stable process observed at d locations, then we
consider

Xj = Yj + εj , j = 1, . . . , d,

where εj are independent half normally distributed random variables, corres-
ponding to the absolute value of a normally distributed random variable with
standard deviation 1/2. All simulations are done in R (R Core Team, 2015).
Realizations of Y are simulated using the SpatialExtremes package (Ribatet,
2015).

Perturbed max-stable processes on a large grid.
Assume that we have d = 100 locations on a 10× 10 unit distance grid. We

simulate 500 samples of size n = 500 from the perturbed Smith model with
parameters

Σ =

[
1.0 0.5
0.5 1.5

]
,

and from a perturbed anisotropic Brown–Resnick process with parameters α =
1, ρ = 3, β = 0.5 and c = 0.5. Instead of estimating ρ, β, and c directly, we
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estimate the three parameters of the matrix

T =

[
τ11 τ12

τ12 τ22

]
= ρ−2 V (β, c)TV (β, c).

In practice, this parametrization, which is in line with the one of the Smith
model, often yields better results. We study the bias and root mean squared
error (RMSE) for k ∈ {25, 50, 75, 100}. We compare the estimators for two
sets of pairs: one containing all pairs (q = 4950) and one containing only
pairs of neighbouring locations (q = 342). Although the first option may
sound like a time-consuming procedure, estimation of the parameters for one
sample takes about 20 seconds for the Smith model and less than two minutes
for the anisotropic Brown–Resnick process. We let the weight matrix Ω be
the q × q identity matrix, since for so many pairs a data-driven computation
of the optimal weight matrix is too time-consuming. Figure 2.1 shows the
bias, standard deviation and RMSE of (σ11, σ22, σ12) for the Smith model. We
see that great improvements are achieved by using only pairs of neighbouring
locations and that the thus obtained estimator performs well. Using all pairs
causes the parameters to have a large positive bias, which translates into a high
RMSE. In general, distant pairs often lead to less dependence and hence less
information about ` and its parameters. Observe that small values of k are
preferable, i.e. k = 25 or k = 50.

Figures 2.2 and 2.3 show the bias, standard deviation and RMSE of the
pairwise M-estimators of the parameters (α, ρ, β, c) of the anisotropic Brown–
Resnick process. We see again that using only pairs of neighbouring locations
improves the quality of estimation. The corresponding estimators perform well
for the estimation of α, β, and c. The lesser performance when estimating ρ
seems to be inherent to the Brown–Resnick process and appears regardless of
the estimation procedure: see for example Engelke et al. (2015) or Wadsworth
and Tawn (2014), who both report a positive bias of ρ for small sample sizes.
Compared to those for the Smith model, the values of k for which the estimation
error is smallest are higher, i.e., k = 50 or k = 75.

A perturbed Brown–Resnick process on a small grid with optimal
weight matrix.

We consider d = 12 locations on an equally spaced unit distance 4× 3 grid.
We simulate 500 samples of size n = 1000 from an anisotropic Brown–Resnick
process with parameters α = 1.5, ρ = 1, β = 0.25 and c = 1.5. We study the
bias, standard deviation, and RMSE for k ∈ {25, 75, 125}. In Figures 2.4 and
2.5, three estimation methods are compared: one involving all pairs (q = 66),
one involving only pairs of neighbouring locations (q = 29), and one using
optimal weight matrices chosen according to the two-step procedure described
after Corollary 3.3, based on the 29 pairs of neighbouring locations. In line with
Corollary 3.3, the weighted estimators have lower (or equal) standard deviation



50 Chapter 2. An M-estimator of spatial tail dependence
0.

0
0.

2
0.

4
0.

6
0.

8

d = 100, n = 500, σ11 = 1

k

bi
as

 o
f σ

11

25 50 75 100

All pairs
Neighbouring

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

d = 100, n = 500, σ22 = 1.5

k

bi
as

 o
f σ

22

25 50 75 100

All pairs
Neighbouring

−
0.

05
0.

05
0.

15
0.

25

d = 100, n = 500, σ12 = 0.5

k

bi
as

 o
f σ

12

25 50 75 100

All pairs
Neighbouring

0.
00

0.
04

0.
08

0.
12

d = 100, n = 500, σ11 = 1

k

sd
 o

f σ
11

25 50 75 100

All pairs
Neighbouring

0.
00

0.
05

0.
10

0.
15

0.
20

d = 100, n = 500, σ22 = 1.5

k

sd
 o

f σ
22

25 50 75 100

All pairs
Neighbouring

0.
00

0.
10

0.
20

0.
30

d = 100, n = 500, σ12 = 0.5

k

R
M

S
E

 o
f σ

12

25 50 75 100

All pairs
Neighbouring

0.
0

0.
2

0.
4

0.
6

0.
8

d = 100, n = 500, σ11 = 1

k

R
M

S
E

 o
f σ

11

25 50 75 100

All pairs
Neighbouring

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

d = 100, n = 500, σ22 = 1.5

k

R
M

S
E

 o
f σ

22

25 50 75 100

All pairs
Neighbouring

0.
00

0.
10

0.
20

0.
30

d = 100, n = 500, σ12 = 0.5

k

R
M

S
E

 o
f σ

12

25 50 75 100

All pairs
Neighbouring

Figure 2.1: Bias, standard deviation and RMSE for estimators of σ11 = 1 (left),
σ22 = 1.5 (right), and σ12 = 0.5 (bottom) for the perturbed 100-dimensional
Smith model with identity weight matrix; 500 samples of n = 500.
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Figure 2.2: Bias, standard deviation and RMSE for estimators of α = 1 (left)
and ρ = 3 (right) for the perturbed 100-dimensional Brown–Resnick process
with identity weight matrix; 500 samples of n = 500.
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Figure 2.3: Bias, standard deviation and RMSE for estimators of β = 0.5 (left)
and c = 0.5 (right) for the perturbed 100-dimensional Brown–Resnick process
with identity weight matrix; 500 samples of n = 500.
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(and RMSE) than the unweighted estimators. The difference is clearest for low
k for α and ρ.

Comparison with Engelke et al. (2015).
To compare the pairwise M-estimator with the one from Engelke et al. (2015),

we consider the setting used in the simulation study of the latter paper: we
simulate 500 samples of size 8000 of the univariate Brown–Resnick process on
an equidistant grid on the interval [0, 3] with step size 0.1. The parameters of
the model are (α, ρ) = (1, 1). We estimate the unknown parameters for k = 500
and q = 140 pairs, so that the locations of the selected pairs are at most a
distance of 0.5 apart. We use the identity weight matrix, since in this particular
setting the weight matrix is very large and, as far as we could tell from some
preliminary experiments, it leads to only a small reduction in estimation error.
Asymptotically we see a reduction of the standard deviations of about 13% for
α and 3% for ρ. In Figure 2.6 below, the results are presented in the form of
boxplots, to facilitate comparison with Figure 2 in Engelke et al. (2015). Our
procedure turns out to perform equally well for the estimation of α and only
slightly worse when estimating ρ. It is to be kept in mind that, whereas the
method in Engelke et al. (2015) is tailor-made for the Brown–Resnick process,
our method is designed to work for general parametric models.

Discussion.
We have seen in the 100-dimensional simulation study that the computation

of the unweighted pairwise estimator is fast even for a large number of pairs.
However, calculating an entry for the optimal weight matrix takes about 15
seconds on a standard computer. Since we have to calculate q(q + 1)/2 entries
of the weight matrix, this method gets more time-consuming when the number
of pairs q is large.

We also noticed that for large dimensions, a relatively small sample size
of n = 500 is sufficient to obtain good results. However, the smaller the di-
mension, the larger the sample size needs to be, i.e., a decrease of information
in space must be compensated by an increase of information in “time”. We
have observed that the choice of the starting value hardly affects the outcome
of the optimisation procedure, unless the dimension is less than five. More
guidelines and rules-of-thumb for practical use of the estimator can be found in
the reference manual and vignette of the tailDepFun package (Kiriliouk, 2016);
see Chapter 4.

Another interesting feature is that, for both the Smith model and the
Brown–Resnick process, considering only neighbouring pairs leads to better res-
ults than considering all pairs. As the distance between two locations increases,
they become tail independent, so that including pairs of distant locations adds
little information about the model parameters.

Finally, to assess the quality of the normal approximation to the sampling
distribution of the estimator, we have conducted simulation experiments for
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Figure 2.4: Bias, standard deviation and RMSE for estimators of α = 1.5 (left)
and ρ = 1 (right) for the perturbed 12-dimensional Brown–Resnick process;
500 samples of n = 1000.
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Figure 2.5: Bias, standard deviation and RMSE for estimators of β = 0.25 (left)
and c = 1.5 (right) for the perturbed 12-dimensional Brown–Resnick process;
500 samples of n = 1000.
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Figure 2.6: Boxplots of estimators of α = 1 (left) and ρ = 1 (right) for a
univariate Brown–Resnick process on the interval [0, 3] with d = 31 and q =
140; 500 samples of n = 8000, k = 500.

the Smith model. For sample sizes n = 5000 and n = 10 000, multivariate
normality was not rejected for any of the values of k we considered.

2.4 Efficiency comparisons

2.4.1 Finite-sample comparisons

A natural question that arises is whether the quality of estimation decreases
when making the step from the d-dimensional estimator θ̂′n in (2.2.2) to the

pairwise estimator θ̂n in (2.2.4). We will demonstrate for the multivariate
logistic model and the Smith model that this is not the case, necessarily in a
dimension where θ̂′n can be computed. Recall that the d-dimensional logistic
model has stable tail dependence function

`(x; θ) =
(
x

1/θ
1 + · · ·+ x

1/θ
d

)θ
, θ ∈ [0, 1].

We simulate 200 samples of size n = 1500 from the logistic model in dimension
d = 5 with parameter value θ0 = 0.5 and we assess the quality of our estimates
via the bias, standard deviation and RMSE for k ∈ {40, 80, . . . , 320}. The
dashed lines in the left panels of Figure 2.7 show the the M-estimator of Einmahl
et al. (2012) with the function g ≡ 1. The results are the same as in Einmahl
et al. (2012, Figure 1). The solid lines show the bias and RMSE for the pairwise

M-estimator with q = 10 and Ω̂n = Iq. We see that the pairwise estimator
performs somewhat better in terms of bias and also has the lower minimal
RMSE, for k = 160. Note that we only show results for the pairwise estimator
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with identity weight matrix since using the optimal weight matrix has no effect
on the estimator.

Next, consider the Smith model with d = 4 locations on an equally spaced
unit distance 2 × 2 grid. We simulate 200 samples of size n = 5000 from an
isotropic Smith model with parameter value θ0 = σ = 2, i.e., Σ = σI2. The
right panels of Figure 2.7 show the bias, standard deviation and RMSE for k ∈
{100, . . . , 600} for the four-dimensional M-estimator with q = 5 weight func-
tions, given by gm(x) = xm for m = 1, . . . , 4 and gm ≡ 1 for m = 5, the pairwise
M-estimator with identity weight matrix, and the pairwise M-estimator with
optimal weight matrix. We see clearly that the pairwise weighted method is
the best one in terms of both bias and RMSE.

2.4.2 Asymptotic variances

Another question is whether the asymptotic variance increases when switching
to the pairwise estimator. First, we consider the Smith model on the line with
d equidistant locations, i.e.,

a2
uv =

(su − sv)2

σ
, su, sv ∈ {1, . . . , d}.

The upper panels of Figure 2.8 show values for the asymptotic variances of
a number of estimators when σ ∈ {0.5, 1, 1.5, 2} and d ∈ {4, 6}. For the d-

dimensional estimator θ̂′n, we used g ≡ 1 as before, and thus q = 1; the formula
for the asymptotic variance is given in (4.6) in Einmahl et al. (2012). For
the pairwise estimator, we computed the asymptotic variance in (2.2.7) in two
cases: first, neighbouring pairs only and identity weight matrix, and second,
all pairs and the optimal weight matrix. Throughout, both pairwise estimators
have a slightly lower asymptotic variance than the d-dimensional estimator.

When the dimension, d, is large, say 100, the method from Einmahl et al.
(2012) involves intractable, high-dimensional integrals. For the sake of com-
parison, we construct a computationally tractable variant of the logistic model
that mimics the property of the Smith model that tail dependence vanishes as
the distance between locations increases.

Consider d locations in r “regions”, every region containing d/r locations.
Within all regions, assume a logistic stable tail dependence function, with a
common value of θ0 ∈ [0, 1] for all regions; locations in different regions are
assumed to be tail independent. The right panel of Figure 2.8 shows the
asymptotic variances of a number of estimators for θ0 ∈ {0.1, 0.2, . . . , 0.9},
d = 100, and r = 20. For the d-dimensional estimator, we used again g ≡ 1
and q = 1. For the pairwise estimator, we used all 10 pairs in each of the
20 regions, yielding q = 200 pairs in total; because of symmetry, the optimal
weight matrix produces the same asymptotic variance as the identity weight
matrix. For most of the parameter values, using the pairwise estimator entails
only a modest increase in asymptotic variance. For some parameter values, it
even leads to a small decrease.
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Figure 2.7: Left: bias, standard deviation and RMSE for estimators of θ0 =
0.5 for the logistic model; 200 samples of n = 1500. Right: bias, standard
deviation and RMSE for estimators of σ = 2 for the Smith model; 200 samples
of n = 5000.
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Figure 2.8: Top: asymptotic variance M(σ) for σ ∈ {0.5, 1, 1.5, 2} and d ∈
{4, 6} for the d-dimensional Smith model on the line; the pairwise estimator
with identity weight matrix (unweighted), the pairwise estimator with optimal
weight matrix (weighted) and the d-dimensional M-estimator from Einmahl
et al. (2012). Bottom: asymptotic variance M(θ0) for θ0 ∈ {0.1, . . . , 0.9},
d = 100 and r = 20 for the logistic model; the pairwise estimator with identity
weight matrix and the d-dimensional M-estimator from Einmahl et al. (2012).
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2.5 Application: speeds of wind gusts

Using extreme-value theory to estimate the frequency and magnitude of ex-
treme wind events or to estimate the return levels for (extremely) long return
periods is not a novelty in the fields of meteorology and climatology. Nu-
merous research papers published in the last 20–25 years are applying methods
from extreme-value theory to treat those estimation problems, see, for example,
Karpa and Naess (2013); Ceppi et al. (2008); Palutikof et al. (1999) and the
references therein. However, until very recently, all statistical approaches were
univariate. In Engelke et al. (2015) and Oesting et al. (2015), for instance,
Brown–Resnick processes are used to model wind speed data.

We consider a data set from the Royal Netherlands Meteorological Insti-
tute (KNMI), consisting of the daily maximal speeds of wind gusts, which are
measured in 0.1 m/s. The data are observed at 35 weather stations in the Neth-
erlands, over the time period from January 1, 1990 to May 16, 2012. The data
set is freely available from http://www.knmi.nl/climatology/daily_data/

selection.cgi. Due to the strong influence of the sea on the wind speeds in
the coastal area, we only consider the inland stations, of which we removed
three stations with more than 1000 missing observations. The thus obtained
22 stations and the remaining amount of missing data per station are shown
in the left panel of Figure 2.9. We aggregate the daily maxima to three-day
maxima in order to minimize temporal dependence and we also restrict our ob-
servation period to the summer season (June, July and August) to obtain more
or less equally distributed data. To treat the missing data, if at least one of the
observations for the three-day maximum is present, we define this to be a valid
three-day maximum, thus ignoring these missing observations. We consider
a three-day maximum missing only if all three constituting daily maxima are
missing. In this way only a few data are missing. We use the “complete dele-
tion approach” for these data and obtain a data set with n = 672 observations.
This data set is available from the tailDepFun package.

Using the R package extremogram, we first study the univariate sample
extremograms to verify if our series of three-day maximal wind speeds exhibit
temporal dependence in the extremes (Davis and Mikosch, 2009). For none of
the stations we found any significant temporal dependence.

Consider the stable tail dependence function corresponding to the Brown–
Resnick process; see Section 2.3.1. It is frequently argued, see e.g. Engelke
et al. (2015) or Ribatet (2013), that an anisotropic model is needed to describe
the spatial tail dependence of wind speeds. Using Corollary 2.2.5 we first test,
based on the q = 29 pairs of stations that are at most 50 kilometres apart,
if the isotropic process suffices for the above data. In the reparametrization
introduced in Section 2.3.2, the case τ11 = τ22 and τ12 = 0 corresponds to
isotropy. The test statistic

k (τ̂11 − τ̂22, τ̂12)M2 (α̂, τ̂11 + τ̂22, 0, 0)
−1

(τ̂11 − τ̂22, τ̂12)
T
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is computed for k = 60. We obtain a value of 0.180, leading to a p-value of
0.914 against the χ2

2-distribution (Corollary 2.2.5), so we can not reject the null
hypothesis. Although the stable tail dependence function corresponding to the
more complicated anisotropic Brown–Resnick process is usually assumed for
this type of data, the test result shows that the more simple isotropic Brown–
Resnick process suffices for the Dutch inland summer season wind speeds.

The estimate of the parameter vector (α, ρ) corresponding to the isotropic
Brown–Resnick process is obtained for k = 60, with q = 29 pairs and using the
optimal weight matrix chosen according to the two-step procedure described
after Corollary 2.2.3. The estimates, with standard errors in parentheses, are
α̂ = 0.398 (0.020) and ρ̂ = 0.372 (0.810). We also see that the Smith model
would not fit these data well since α is much smaller than 2.
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Figure 2.9: KNMI weather stations (left). Estimates of the extremal coefficient
function (right).

To visually assess the goodness-of-fit, we compare the nonparametric and
the Brown–Resnick model based estimates of the pairwise extremal coefficients
function, `(1, 1). Instead of presenting them as a function of the actual distance
between stations, we exploit the simple expression `(1, 1) = 2Φ (auv/2) for the
extremal coefficient function of the Brown-Resnick process, see Section 2.3.1.

In the right panel of Figure 2.9, the following are depicted:

• the 231 nonparametric estimates of the extremal coefficient function
`(1, 1), based on all pairs of stations (circles),

• 6 per-bin averages of the nonparametric estimates of `(1, 1) (solid line),
and

• the extremal coefficient function values computed from the model (dashed
line),
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against the estimated distances

âuv =
√

2γ̂(su − sv) =
√

2

(
‖su − sv‖

ρ̂

)α̂/2
.

The vertical line in the plot represents the 50 km threshold. It is more
in line with our M-estimator, which uses integration over [0, 1]2, to focus on
the center (1/2, 1/2) instead of the vertex (1, 1) of the unit square. Hence, we
use the homogeneity of ` to replace `(1, 1) with 2`(1/2, 1/2) and then estimate

the latter with 2̂̀n,k(1/2, 1/2). The nonparametric estimates of `(1, 1) in the
figure are obtained in this way. We see that the estimated `(1, 1) of the Brown–

Resnick process is quite close to the average 2̂̀n,k(1/2, 1/2) per-bin, supporting
the adequacy of the model.

2.A Proofs

The notations are as in Section 2.2. Let Θ̂n,k denote the (possibly empty) set
of minimizers of the function

fn,k,Ω̂n(θ) = Dn,k(θ)T Ω̂nDn,k(θ) =: ‖Dn,k(θ)‖2
Ω̂n
.

Write δ0 for the Dirac measure concentrated at zero. Write (u, v) for the m-th
element of the sequence of pairs P, for m ∈ {1, . . . , q}. Let υ = (υ1, . . . , υq)
denote a column vector of measures on Rd whose m-th element is defined as

υm(dx) = υm(dx1 × · · · × dxd) = υm1(dx1)× · · · × υmd(dxd)

:= dxu dxv
∏
j 6=u,v

δ0( dxj),

so that υmj is the Lebesgue measure if j = u or j = v, and υmj is the Dirac
measure at zero for j 6= u, v. Using the measures υm allows us to write

Dn,k(θ) =

(∫
[0,1]d

{̂̀
n,k(x)− `(x; θ)

}
υm(dx)

)q
m=1

= L̂n,k − L(θ).

Lemma 2.A.1. If 0 < λn,1 ≤ · · · ≤ λn,q and 0 < λ1 ≤ · · · ≤ λq denote the

ordered eigenvalues of the symmetric matrices Ω̂n and Ω ∈ Rq×q, respectively,
then, as n→∞,

Ω̂n
p−→ Ω implies (λn,1, . . . , λn,q)

p−→ (λ1, . . . , λq).

Proof of Lemma 2.A.1. The convergence Ω̂n
p−→ Ω elementwise implies ‖Ω̂n −

Ω‖ p−→ 0 for any matrix norm ‖ · ‖ on Rq×q. If we take the spectral norm ‖Ω‖
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(i.e., ‖Ω‖2 is the largest eigenvalue of ΩTΩ), then Weyl’s perturbation theorem
(Jiang, 2010, page 145) states that

max
i=1,...,q

|λn,i − λi| ≤ ‖Ω̂n − Ω‖,

so that the desired result follows immediately.

By the diagonalization of Ω̂n in terms of its eigenvectors and eigenvalues,
the norm ‖ · ‖Ω̂n is equivalent to the Euclidian norm ‖ · ‖ in the sense that

λn,1‖Dn,k(θ)‖2 ≤ ‖Dn,k(θ)‖2
Ω̂n
≤ λn,q‖Dn,k(θ)‖2.

Proof of Theorem 2.2.1. Let ε0 > 0 be such that the closed ball Bε0(θ0) = {θ :
‖θ − θ0‖ ≤ ε0} is a subset of Θ; such an ε0 exists since θ0 is an interior point
of Θ. Fix ε > 0 such that 0 < ε ≤ ε0. We first show that

P[Θ̂n 6= ∅ and Θ̂n,k ⊂ Bε(θ0)]→ 1, n→∞. (2.A.1)

Because L is a homeomorphism, there exists δ > 0 such that for θ ∈ Θ,
‖L(θ)− L(θ0)‖ ≤ δ implies ‖θ − θ0‖ ≤ ε. Equivalently, for every θ ∈ Θ such
that ‖θ − θ0‖ > ε we have ‖L(θ)− L(θ0)‖ > δ. Define the event

An =

{∥∥∥L(θ0)− L̂n,k
∥∥∥ < δ

√
λn,1

(1 +
√
λn,1) max

(
1,
√
λn,q

)} .
If θ ∈ Θ is such that ‖θ − θ0‖ > ε, then on the event An, we have

‖Dn,k(θ)‖Ω̂n ≥
√
λn,1 ‖Dn,k(θ)‖

=
√
λn,1

∥∥∥L(θ0)− L(θ)−
(
L(θ0)− L̂n,k

)∥∥∥
≥
√
λn,1

(
‖L(θ0)− L(θ)‖ − ‖L(θ0)− L̂n,k‖

)
>
√
λn,1

(
δ −

δ
√
λn,1

1 +
√
λn,1

)
=

√
δλn,1

1 +
√
λn,1

.

It follows that on An,

inf
θ:‖θ−θ0‖>ε

‖Dn,k(θ)‖Ω̂n ≥
δ
√
λn,1

1 +
√
λn,1

>
√
λn,q

∥∥∥L(θ0)− L̂n,k
∥∥∥

≥
∥∥∥L(θ0)− L̂n,k

∥∥∥
Ω̂n
≥ inf
θ:‖θ−θ0‖≤ε

∥∥∥L(θ)− L̂n,k
∥∥∥

Ω̂n
.

The infimum on the right-hand side is actually a minimum since L is continuous
and Bε(θ0) is compact. Hence on An the set Θ̂n,k is non-empty and Θ̂n,k ⊂
Bε(θ0).
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To show (2.A.1), it remains to be shown that P[An]→ 1 as n→∞. Uniform

consistency of ̂̀n,k for d = 2 was shown in Huang (1992); see also de Haan and
Ferreira (2006, page 237). The proof for d > 2 is a straightforward extension.

By the continuous mapping theorem, it follows that L̂n,k is consistent for L(θ0).
By Lemma 2.A.1, λn,m is consistent for λm for all m ∈ {1, . . . , q}. This yields
P[An]→ 1 and thus (2.A.1).

Next we wish to prove that, with probability tending to one, Θ̂n,k has
exactly one element, i.e., the function fn,k,Ω̂n has a unique minimizer. To do

so, we will show that there exists ε1 ∈ (0, ε0] such that, with probability tending
to one, the Hessian of fn,k,Ω̂n is positive definite on Bε1(θ0) and thus fn,k,Ω̂n
is strictly convex on Bε1(θ0). In combination with (2.A.1) for ε ∈ (0, ε1], this
will yield the desired conclusion.

For θ ∈ Θ, define the symmetric p× p matrix H(θ;θ0) by

(
H(θ;θ0)

)
i,j

:= 2

(
∂L(θ)

∂θj

)T
Ω

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj∂θi

)
Ω
(
L(θ0)− L(θ)

)
for i, j ∈ {1, . . . , p}. The map θ 7→ H(θ;θ0) is continuous and

H(θ0) := H(θ0;θ0) = 2 L̇(θ0)T Ω L̇(θ0),

is a positive definite matrix. Let ‖ · ‖ denote a matrix norm. By an argument
similar to that in the proof of Lemma 2.A.1, there exists η > 0 such that every
symmetric matrix A ∈ Rp×p with ‖A−H(θ0)‖ ≤ η has positive eigenvalues
and is therefore positive definite. Let ε1 ∈ (0, ε0] be sufficiently small such that
the second-order partial derivatives of L are continuous on Bε1(θ0) and such
that ‖H(θ;θ0)−H(θ0)‖ ≤ η/2 for all θ ∈ Bε1(θ0).

Let Hn,k,Ω̂n(θ) ∈ Rp×p denote the Hessian matrix of fn,k,Ω̂n . Its (i, j)-th
element is(
Hn,k,Ω̂n(θ)

)
ij

=
∂2

∂θj∂θi

[
Dn,k(θ)T Ω̂nDn,k(θ)

]
=

∂

∂θj

[
−2Dn,k(θ)T Ω̂n

∂L(θ)

∂θi

]
= 2

(
∂L(θ)

∂θj

)T
Ω̂n

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj∂θi

)
Ω̂nDn,k(θ).

Since Dn,k(θ) = L̂n,k −L(θ) and since L̂n,k converges in probability to L(θ0),
we obtain

sup
θ∈Bε1 (θ0)

‖Hn,k,Ω̂n(θ)−H(θ;θ0)‖ p−→ 0, n→∞. (2.A.2)

By the triangle inequality, it follows that

P
[

sup
θ∈Bε1 (θ0)

‖Hn,k,Ω̂n(θ)−H(θ0)‖ ≤ η
]
→ 1, n→∞.
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In view of our choice for η, this implies that, with probability tending to one,
Hn,k(θ) is positive definite for all θ ∈ Bε1(θ0), as required.

Proof of Theorem 2.2.2. First note that, as n→∞,

√
kDn,k(θ0)

d−→ B̃, where B̃ ∼ Nq(0,Γ(θ0)).

This follows directly from Einmahl et al. (2012, Proposition 7.3) by replacing
g(x)dx with υ(dx). Also, from (C2) and Slutsky’s lemma, we have

√
k∇fn,k,Ω̂n(θ0) = −2

√
kDn,k(θ0)T Ω̂n L̇(θ0)

d−→ −2 B̃T Ω L̇(θ0) ∼ Np
(
0, 4 L̇(θ0)T Ω Γ(θ0) Ω L̇(θ)

)
.

Since θ̂n is a minimizer of f̂k,n we have ∇fn,k,Ω̂n(θ̂n) = 0. Applying the mean

value theorem to the function t 7→ ∇fn,k,Ω̂n(θ0 + t(θ̂n−θ0)) at t = 0 and t = 1
yields

0 = ∇fn,k,Ω̂n(θ̂n) = ∇fn,k,Ω̂n(θ0) +Hn,k,Ω̂n(θ̃n) (θ̂n − θ0)

where θ̃n is a random vector on the segment connecting θ0 and θ̂n. As θ̂n
p−→ θ0,

we have θ̃n
p−→ θ0 too. By (2.A.2) and continuity of θ 7→ H(θ;θ0), it then

follows that Hn,k,Ω̂n(θ̃n)
p−→ H(θ0). Putting these facts together, we conclude

that

√
k(θ̂n − θ0) = −

(
Hn,k,Ω̂n(θ̃n)

)−1√
k∇fn,k,Ω̂n(θ0)

d−→ Np
(
0,M(θ0)

)
,

as required.

Proof of Corollary 2.2.3. Assumption (C6) implies that the map θ 7→ Γ(θ)

is continuous at θ0 (Einmahl et al., 2008, Lemma 7.2). Further, Γ(θ̂
(0)
n )−1

converges in probability to Γ(θ0)−1, because of the continuous mapping the-

orem and the fact that θ̂
(0)
n is a consistent estimator of θ0. Finally, the choice

Ωopt = Γ(θ)−1 in (2.2.7) leads to the minimal matrix Mopt(θ) in (2.2.8); see
for example Abadir and Magnus (2005, page 339).

2.B Calculating the asymptotic variance matrix

Let (u, v), (u′, v′) ∈ P denote the i-th and j-th element of the sequence P
respectively. Let ˙̀

uv,1(xu, xv) and ˙̀
uv,2(xu, xv) denote the partial derivatives

of `uv(xu, xv) with respect to xu and xv respectively and define

W`,uv = WΛ({wu, wv ∈ [0,∞]2 \ {(∞,∞)} : wu ≤ xu or wv ≤ xv}).
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Note that

Buv(xu, xv) = W`,uv(xu, xv)

− ˙̀
uv,1(xu, xv)W`,u(xu)− ˙̀

uv,2(xu, xv)W`,v(xv).

The (i, j)-th entry of Γ(θ) ∈ Rq×q from (2.2.6) is given by∫
[0,1]4

E[Buv(xu, xv)Bu′v′(xu′ , xv′)] dx =∫
[0,1]4

(T1 − T2 − T3 + T4 + T5) dx, (2.B.1)

for x = (xu, xv, xu′ , xv′) where

T1 = E[W`,uv(xu, xv)W`,u′v′(xu′ , xv′)],

T2 = ˙̀
u′v′,1(xu′ , xv′)E[W`,uv(xu, xv)W`,u′(xu′)]

+ ˙̀
u′v′,2(xu′ , xv′)E[W`,uv(xu, xv)W`,v′(xv′)],

T3 = ˙̀
uv,1(xu, xv)E[W`,u(xu)W`,u′v′(xu′ , xv′)]

+ ˙̀
uv,2(xu, xv)E[W`,v(xv)W`,u′v′(xu′ , xv′)],

T4 = ˙̀
uv,1(xu, xv) ˙̀

u′v′,1(xu′ , xv′)E[W`,u(xu)W`,u′(xu′)]

+ ˙̀
uv,2(xu, xv) ˙̀

u′v′,2(xu′ , xv′)E[W`,v(xv)W`,v′(xv′)],

T5 = ˙̀
uv,1(xu, xv) ˙̀

u′v′,2(xu′ , xv′)E[W`,u(xu)W`,v′(xv′)]

+ ˙̀
uv,2(xu, xv) ˙̀

u′v′,1(xu′ , xv′)E[W`,v(xv)W`,u′(xu′)].

Suppose (u, v, u′, v′) are all different and define the sets

Aij(zi, zj) = {w ∈ [0,∞]d \ {∞} : wi ≤ zi or wj ≤ zj}.

Then

E[W`,uv(xu, xv)W`,u′v′(xu′ , xv′)] = E[WΛ(Auv(xu, xv))WΛ(Au′v′(xu′ , xv′))]

= Λ(Auv(xu, xv) ∩Au′v′(xu′ , xv′))
= Λ(Auv(xu, xv)) + Λ(Au′v′(xu′ , xv′))

− Λ(Auv(xu, xv) ∪Au′v′(xu′ , xv′))
= `uv(xu, xv) + `u′v′(xu′ , xv′)

− `uvu′v′(xu, xv, xu′ , xv′).

Similar calculations for the other terms yield

T1 = `uv(xu, xv) + `u′v′(xu′ , xv′)− `uvu′v′(xu, xv, xu′ , xv′),
T2 = ˙̀

u′v′,1(xu′ , xv′)[`uv(xu, xv) + xu′ − `uvu′(xu, xv, xu′)]
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+ ˙̀
u′v′,2(xu′ , xv′)[`uv(xu, xv) + xv′ − `uvv′(xu, xv, xv′)],

T3 = ˙̀
uv,1(xu, xv)[`u′v′(xu′ , xv′) + xu − `uu′v′(xu, xu′ , xv′)]
+ ˙̀

uv,2(xu, xv)[`u′v′(xu′ , xv′) + xv − `vu′v′(xv, xu′ , xv′)],
T4 = ˙̀

uv,1(xu, xv) ˙̀
u′v′,1(xu′ , xv′)[xu + xu′ − `uu′(xu, xu′)]

+ ˙̀
uv,2(xu, xv) ˙̀

u′v′,2(xu′ , xv′)[xv + xv′ − `vv′(xv, xv′)],
T5 = ˙̀

uv,1(xu, xv) ˙̀
u′v′,2(xu′ , xv′)[xu + xv′ − `uv′(xu, xv′)]

+ ˙̀
uv,2(xu, xv) ˙̀

u′v′,1(xu′ , xv′)[xv + xu′ − `vu′(xv, xu′)].

Integrating directly over T1, . . . , T5 is very slow, so we would like to simplify as
many terms as possible. Introduce the notations

I(u, v) :=

∫ 1

0

∫ 1

0

`uv(xu, xv) dxu dxv,

I(u, v;xu) :=

∫ 1

0

`uv(xu, xv) dxv,

Iu(u, v;xu) :=

∫ 1

0

∂`uv(xu, xv)

∂xu
dxv.

Now we can write the four-dimensional integrals in (2.B.1) as:∫
[0,1]4

T1 = I(u, v) + I(u′, v′)

−
∫

[0,1]4
`uvu′v′(xu, xv, xu′ , xv′) dxu dxv dxu′ dxv′ ,∫

[0,1]4
T2 = I(u, v)[2I(u′, v′; 1)− 1] + 2I(u′, v′; 1)− 2I(u′, v′)

−
∫

[0,1]3
Iu′(u

′, v′;xu′)`uvu′(xu, xv, xu′) dxu′ dxu dxv

−
∫

[0,1]3
Iv′(u

′, v′;xv′)`uvv′(xu, xv, xv′) dxv′ dxu dxv,∫
[0,1]4

T3 = I(u′, v′)[2I(u, v; 1)− 1] + 2I(u, v; 1)− 2I(u, v)

−
∫

[0,1]3
Iu(u, v;xu)`uu′v′(xu, xu′ , xv′) dxu dxu′ dxv′

−
∫

[0,1]3
Iv(u, v;xv)`vu′v′(xv, xu′ , xv′) dxv dxu′ dxv′ ,∫

[0,1]4
T4 = [I(u, v)− I(u, v; 1)][1− 2I(u′, v′; 1)]

+ [I(u′, v′)− I(u′, v′; 1)][1− 2I(u, v; 1)]



68 Chapter 2. An M-estimator of spatial tail dependence

−
∫

[0,1]2
Iu(u, v;xu)Iu′(u

′, v′;xu′)`uu′(xu, xu′) dxu dxu′

−
∫

[0,1]2
Iv(u, v;xv)Iv′(u

′, v′;xv′)`vv′(xv, xv′) dxv dxv′ ,∫
[0,1]4

T5 = [I(u, v)− I(u, v; 1)][1− 2I(u′, v′; 1)]

+ [I(u′, v′)− I(u′, v′; 1)][1− 2I(u, v; 1)]

−
∫

[0,1]2
Iu(u, v;xu)Iv′(u

′, v′;xv′)`uv′(xu, xv′) dxu dxv′

−
∫

[0,1]2
Iv(u, v;xv)Iu′(u

′, v′;xu′)`vu′(xv, xu′) dxv dxu′ .

For the Brown–Resnick process, we can compute the integrals I(u, v),
I(u, v;xu) and Iu(u, v;xu) analytically. To calculate I(u, v), we make the
change of variables log (xu/xv) = 2z1 and log (xuxv) = 2z2, so that dxu dxv =
2 exp (2z2) dz1 dz2 and the area we integrate over is the area between the lines
z2 = z1 and z2 = −z1 for z2 < 0. We obtain, for a = auv =

√
2γ(V (su − sv))

I(u, v) =

∫ ∞
−∞

∫ −|z1|
−∞

{
ez2+z1Φ

(
a

2
+

2z1

a

)
+ ez2−z1Φ

(
a

2
− 2z1

a

)}
2e2z2 dz2 dz1

= Φ(a/2) +
ea

2

Φ(−3a/2)

3
.

The other two integrals are given by

I(u, v;xu) =
1

2
Φ

(
a

2
− log xu

a

)
+ xuΦ

(
a

2
+

log xu
a

)
+
x2
ue
a2

2
Φ

(
− 3a

2
− log xu

a

)
,

Iu(u, v;xu) = Φ

(
a

2
+

log xu
a

)
+ xue

a2Φ

(
− 3a

2
− log xu

a

)
.

These functions are implemented in the R package tailDepFun (Kiriliouk,
2016). For multivariate integration, the package cubature was used. The four-
dimensional stable tail dependence function, which can be written as a sum of
three-dimensional normal distribution functions as in Section 4.1, is computed
using the package mvtnorm.



Chapter 3

A continuous updating weighted
least squares estimator of tail
dependence in high dimensions

Abstract

Likelihood-based procedures are a common way to estimate tail de-
pendence parameters, although they can be hard to compute in high di-
mensions. Moreover, they are not applicable to non-differentiable models
such as those arising from max-linear structural equation models. An ad-
aptive weighted least squares procedure matching nonparametric estim-
ates of the stable tail dependence function with the corresponding values
of a parametrically specified proposal yields a novel minimum-distance
estimator. The estimator is easy to calculate and applies to a wide range
of sampling schemes and tail dependence models. In large samples, it
is asymptotically normal with an explicit and estimable covariance mat-
rix. The minimum distance obtained forms the basis of a goodness-of-fit
statistic whose asymptotic distribution is chi-square. Extensive Monte
Carlo simulations confirm the excellent finite-sample performance of the
estimator and demonstrate that it is a strong competitor to currently
available methods. The estimator is then applied to disentangle sources
of tail dependence in European stock markets. This chapter is based on
Einmahl, Kiriliouk and Segers (2016b).

3.1 Introduction

Extreme-value analysis has been applied to measure and manage financial and
actuarial risks, assess natural hazards stemming from heavy rainfall, wind
storms, and earthquakes, and control processes in the food industry, internet
traffic, aviation, and other branches of human activity. Multivariate data gives
rise to tail dependence, represented here by the stable tail dependence function
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`. Estimating this tail dependence function is the subject of this chapter; fit-
ting tail dependence models for spatial phenomena observed at finitely many
sites constitutes an interesting special case.

In high(er) dimensions, the class of tail dependence functions becomes
rather unwieldy, and therefore we follow the common route of modelling it
parametrically. Note that this is far from imposing a fully parametric model
on the data generating process. In particular, we only assume a domain-of-
attraction condition at the copula level.

Recall that likelihood-based procedures are not applicable to models in-
volving non-differentiable stable tail dependence functions, such as the ones
arising in max-linear models (Wang and Stoev, 2011; Einmahl et al., 2012).
Recently, these models seem to have gained in popularity. In Gissibl and
Klüppelberg (2015), max-linear structural equation models are introduced, al-
lowing one to model extremes on directed acyclic graphs. While the max-linear
model in Wang and Stoev (2011) is based on a random vector with independent,
unit Fŕechet distributed components, in Falk et al. (2015) a generalized max-
linear model is introduced, which is based on a random vector with any type
of dependence structure. Other related work includes a spatial generalization
of the max-linear model in Strokorb et al. (2015).

Non-differentiability is not the only motivation for the use of the stable tail
dependence function. Even for smooth and simple models like the logistic one,
likelihoods can be hard to compute when the dimension is very high. This
is why current likelihood methods are usually based on composite likelihoods,
relying on pairs or triples of variables only, not exploiting information from
higher-dimensional tuples.

It is the goal of this chapter to estimate the true parameter vector θ0 of the
stable tail dependence function ` and to assess the goodness-of-fit of the para-
metric model. The parameter estimator is obtained by comparing, at finitely
many points in the domain of `, some initial, typically nonparametric, estim-
ator of the latter with the corresponding values of the parametrically specified
proposals, and retaining the parameter value yielding the best match. The
method is generic in the sense that it applies to many parametric models, dif-
ferentiable or not, and to many initial estimators, not only the usual empirical
tail dependence function but also, for instance, bias-corrected versions thereof
(Fougères et al., 2015; Beirlant et al., 2016). Further, the method avoids integ-
ration or differentiation of functions of many variables and can therefore handle
joint dependence between many variables simultaneously, more easily than the
likelihood methods mentioned earlier and the pairwise M-estimator approach
in Chapter 2. This feature is particularly interesting for inferring on higher-
order interactions, going beyond mere distance-based dependence models such
as those frequently employed for spatial extremes. Finally, in those situations
where likelihood methods are applicable, the new estimator is a strong com-
petitor.

The distance between the initial estimator and the parametric candidates
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is measured through weighted least squares. The weight matrix may depend
on the unknown parameter θ and is hence estimated simultaneously. The con-
struction of the estimator bears some similarity with the continuous updating
generalized method of moments (Hansen et al., 1996); the present estimator,
however, is substantially different and does not use moments. The flexible es-
timation procedure is related to that in Chapter 2, but the continuous updating
procedure is new in multivariate extreme-value statistics.

We show that the weighted least squares estimator for the tail depend-
ence function is consistent and asymptotically normal, provided that the ini-
tial estimator enjoys these properties too, as is the case for the empirical tail
dependence function and its recently proposed bias-corrected variations. The
asymptotic covariance matrix is a function of the unknown parameter and can
thus be estimated by a plug-in technique. We also provide novel goodness-of-fit
tests for the parametric tail dependence model based on a comparison between
the nonparametric and the parametric estimators. Under the null hypothesis
that the tail dependence model is correctly specified, the test statistics are
asymptotically chi-square distributed.

This chapter is organized as follows. In Section 3.2 we present the estimator,
the goodness-of-fit statistic, and their asymptotic distributions. Section 3.3 re-
ports on a Monte Carlo simulation study involving a variety of models, as well
as a finite-sample comparison of our estimator with estimators based on com-
posite likelihoods. An application to European stock market data is presented
in Section 3.4, where we try to disentangle sources of tail dependence stemming
from the country of origin (Germany versus France) and the economic sector
(chemicals versus insurance), fitting a structural equation model. All proofs
are deferred to the appendix.

3.2 Inference on tail dependence parameters

3.2.1 Set-up

Let Xi = (Xi1, . . . , Xid), i ∈ {1, . . . , n}, be random vectors in Rd with cumu-
lative distribution function F and marginal distribution functions F1, . . . , Fd.
Recall that the stable tail dependence function is defined as

`(x) := lim
t↓0

t−1 P[1− F1(X11) ≤ tx1 or · · · or 1− Fd(X1d) ≤ txd], (3.2.1)

for x ∈ [0,∞)d, provided the limit exists, as we will assume throughout. Exist-
ence of the limit is a necessary, but not sufficient, condition for F to be in the
max-domain of attraction of a d-variate generalized extreme-value distribution.
Henceforth we assume that ` belongs to a parametric family {`( · ;θ) : θ ∈ Θ}
with Θ ⊂ Rp. Let θ0 denote the true parameter vector, that is, let θ0 denote
the unique point in Θ such that `(x) = `(x;θ0) for all x ∈ [0,∞)d. Our aim is
to estimate the parameter θ0 and to test the goodness-of-fit of the model.
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Extremal coefficients constitute a popular summary measure of tail depend-
ence (de Haan, 1984; Smith, 1990; Schlather and Tawn, 2003). For non-empty
J ⊂ {1, . . . , d}, let eJ ∈ Rd be defined by

(eJ)j :=

{
1 if j ∈ J ,

0 if j ∈ {1, . . . , d} \ J .
(3.2.2)

The extremal coefficients are defined by

`J := `(eJ) = lim
t↓0

t−1P
[
max
j∈J

Fj(X1j) ≥ 1− t
]
. (3.2.3)

The extremal coefficients `J ∈ [1, |J |] can be interpreted as assigning to each
subset J the effective number of tail independent variables among (X1j)j∈J .
Note that for J = {j1, j2}, the extremal coefficient `(eJ) is equal to 2− χj1,j2 ,
where χj1,j2 denotes the tail dependence coefficient corresponding to the vari-
ables X1j1 , X1j2 ; see (1.3.6).

Comparing initial and parametric estimators of the extremal coefficients is
a special case of the inference method that we propose. In fact, Smith (1990)
already proposes an estimator based on pairwise (|J | = 2) extremal coefficients;
see also de Haan and Pereira (2006) and Oesting et al. (2015).

3.2.2 Continuous updating weighted least squares estim-
ator

Let ˜̀n,k denote an initial estimator of ` based onX1, . . . ,Xn; some possibilities

will be described in Subsection 3.2.5. The estimators ˜̀n,k that we will consider
depend on an intermediate sequence k = kn ∈ (0, n], that is,

k →∞ and k/n→ 0, as n→∞. (3.2.4)

The sequence k will determine the tail fraction of the data that we will use for
inference, see for instance Subsection 3.2.5.

Let c1, . . . , cq ∈ [0,∞)d, with cm = (cm1, . . . , cmd) for m = 1, . . . , q, be q

points in which we will evaluate ` and ˜̀n,k. Consider the q× 1 column vectors

L̂n,k :=
(˜̀
n,k(cm)

)q
m=1

,

L(θ) :=
(
`(cm;θ)

)q
m=1

, (3.2.5)

Dn,k(θ) := L̂n,k − L(θ), (3.2.6)

where θ ∈ Θ. The points c1, . . . , cq need to be chosen in such a way that
the map L : Θ → Rq is one-to-one, i.e., θ is identifiable from the values of
`(c1;θ), . . . , `(cq;θ). In particular, we will assume that q ≥ p, where p is
the dimension of the parameter space Θ. Since `(ae{j}) = a for any stable
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tail dependence function `, any a ∈ [0,∞) and any j ∈ {1, . . . , d}, we will
choose the points cm in such a way that each point has at least two positive
coordinates.

For θ ∈ Θ, let Ω(θ) be a symmetric, positive definite q × q matrix with
ordered eigenvalues 0 < λ1(θ) ≤ · · · ≤ λq(θ) and define

fn,k(θ) := ‖Dn,k(θ)‖2Ω(θ) := DT
n,k(θ) Ω(θ)Dn,k(θ). (3.2.7)

Our continuous updating weighted least squares estimator for θ0 is defined as

θ̂n,k := arg min
θ∈Θ

fn,k(θ) = arg min
θ∈Θ

{
Dn,k(θ)T Ω(θ)Dn,k(θ)

}
. (3.2.8)

The set of minimizers could be empty or could have more than one element.
The present notation, suggesting that there exists a unique minimizer, will
be justified in Theorem 3.2.1. If all points cm are chosen as eJm in (3.2.2)
for some collection J1, . . . , Jq of q different subsets of {1, . . . , d}, each subset
having at least two elements, then we will refer to our estimator as an extremal
coefficients estimator.

We will address the optimal choice of Ω(θ) below. The simplest choice for
Ω(θ) is the identity matrix Iq, yielding an ordinary least squares estimator

θ̂n,k = arg min
θ∈Θ

q∑
m=1

(˜̀
n,k(cm)− `(cm;θ)

)2
. (3.2.9)

This special case of our estimator is similar to the estimator proposed in Nolan
et al. (2015) in the more specific context of fitting max-stable distributions to
a random sample from such a distribution.

3.2.3 Consistency and asymptotic normality

If L is differentiable at an interior point θ ∈ Θ, its total derivative will be
denoted by L̇(θ) ∈ Rq×p. Differentiability of the map θ 7→ L(θ) is a basic
smoothness condition on the model; we do not assume differentiability of the
map x 7→ `(x;θ).

Theorem 3.2.1 (Existence, uniqueness and consistency). Let {`( · ;θ) : θ ∈
Θ}, with Θ ⊂ Rp, be a parametric family of d-variate stable tail dependence
functions. Let c1, . . . , cq ∈ [0,∞)d be q ≥ p points such that the map L :
θ 7→ (`(cm;θ))qm=1 is a homeomorphism from Θ to L(Θ). Let the true d-
variate distribution function F have stable tail dependence function `( · ;θ0) for
some interior point θ0 ∈ Θ. Assume that L is twice continuously differentiable
on a neighbourhood of θ0 and that L̇(θ0) is of full rank; also assume that
Ω : Θ → Rq×q is twice continuously differentiable on a neighbourhood of θ0.
Assume λ1 := infθ∈Θ λ1(θ) > 0. Finally assume, for m = 1, . . . , q, and for a
positive sequence k = kn satisfying (3.2.4),˜̀

n,k(cm)
p−→ `(cm;θ0), as n→∞. (3.2.10)
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Then with probability tending to one, the minimizer θ̂n,k in (3.2.8) exists and
is unique. Moreover,

θ̂n,k
p−→ θ0, as n→∞.

Theorem 3.2.2 (Asymptotic normality). If in addition to the assumptions of

Theorem 3.2.1, the estimator ˜̀n,k satisfies

√
kDn,k(θ0) =

(√
k
{˜̀

n,k(cm)− `(cm;θ0)
})q

m=1

d−→ Nq
(
0,Γ(θ0)

)
, (3.2.11)

as n→∞, for some q × q covariance matrix Γ(θ0), then, as n→∞,

√
k (θ̂n,k − θ0) = (L̇TΩL̇

)−1
L̇TΩ

√
kDn,k(θ0) + op(1) (3.2.12)

d−→ Np
(
0,M(θ0)

)
, (3.2.13)

where the p× p covariance matrix M(θ0) is defined by

M(θ0) := (L̇TΩL̇)−1 L̇TΩ Γ(θ0) ΩL̇ (L̇TΩL̇)−1,

and the matrices L̇ and Ω are evaluated at θ0.

Provided Γ(θ0) is invertible, we can choose Ω in such a way that the
asymptotic covariance matrix M(θ0) is minimal, say Mopt(θ0), i.e., the dif-
ference M(θ0) −Mopt(θ0) is positive semi-definite. The minimum is attained
at Ω(θ0) = Γ(θ0)−1 and the matrix M(θ0) becomes simply

Mopt(θ0) =
(
L̇(θ0)T Γ(θ0)−1 L̇(θ0)

)−1
, (3.2.14)

see for instance Abadir and Magnus (2005, page 339). Now extend the covari-
ance matrix Γ(θ0) to the whole parameter space Θ by letting the map θ 7→ Γ(θ)
be such that Γ(θ) is an invertible covariance matrix and Γ−1 : Θ→ Rq×q sat-
isfies the assumptions on Ω.

Corollary 3.2.3 (Optimal weight matrix). If in addition to the assumptions of

Theorem 3.2.2, θ̂n,k is the estimator based on the weight matrix Ω(θ) = Γ(θ)−1,
then, with Mopt as in (3.2.14), we have

√
k(θ̂n,k − θ0)

d−→ Np
(
0,Mopt(θ0)

)
, as n→∞. (3.2.15)

The asymptotic covariance matrices M and Mopt in (3.2.12) and (3.2.15),
respectively, depend on the unknown parameter vector θ0 through the matrices
L̇(θ), Ω(θ) and Γ(θ) evaluated at θ = θ0. If these matrices vary continuously
with θ, then it is a standard procedure to construct confidence regions and
hypothesis tests, cf. Einmahl et al. (2012, Corollaries 4.3 and 4.4).
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3.2.4 Goodness-of-fit testing

It is of obvious importance to be able to test the goodness-of-fit of the paramet-
ric family of tail dependence functions that we intend to use. The basis for such
a test is Dn,k(θ̂n,k), the difference vector between the initial and parametric
estimators of `(cm) at the estimated value of the parameter.

Corollary 3.2.4. Under the assumptions of Theorem 3.2.2, we have, as n→
∞,

√
kDn,k(θ̂n,k) = (Iq − P (θ0))

√
kDn,k(θ0) + op(1)

d−→ Nq
(
0, (Iq − P (θ0)) Γ(θ0) (Iq − P (θ0))T

)
, (3.2.16)

where P (θ0) := L̇(L̇TΩL̇)−1 L̇TΩ has rank p, Iq − P (θ0) has rank q − p and

the matrices L̇ and Ω are evaluated at θ0.

The easiest case in which (3.2.16) can be exploited is when Γ(θ) is invertible
and Ω(θ) = Γ(θ)−1. Then it suffices to consider the minimum attained by the

criterion function fn,k in (3.2.7), i.e., the test statistic is just fn,k(θ̂n,k) =
minθ∈Θ fn,k(θ). Observe that it is important here that we allow Ω to depend
on θ.

Corollary 3.2.5. Let q > p. If the assumptions of Corollary 3.2.3 are satisfied,
in particular if Ω(θ) = Γ(θ)−1, then

k fn,k(θ̂n,k)
d−→ χ2

q−p, as n→∞.

If Ω(θ) is different from Γ(θ)−1, for instance when Γ(θ) is not invertible, a
goodness-of-fit test can still be based upon (3.2.16) by considering the spectral
decomposition of the limiting covariance matrix. For convenience, we suppress
the dependence on θ. Let

(Iq − P ) Γ (Iq − P )T = V DV T ,

where V = (v1, . . . , vq) is an orthogonal q×q matrix, V TV = Iq, the columns of
which are orthonormal eigenvectors, and D is diagonal, D = diag(κ1, . . . , κq),
with κ1 ≥ · · · ≥ κq = 0 the corresponding eigenvalues, at least p of which are
zero, the rank of Iq −P being q− p. Let s ∈ {1, . . . , q− p} be such that κs > 0
and consider the q × q matrix

A := VsD
−1
s V Ts ,

where Ds = diag(κ1, . . . , κs) is an s × s diagonal matrix and where Vs =
(v1, . . . , vs) is a q × s matrix having the first s eigenvectors as its columns.

Corollary 3.2.6. If the assumptions of Theorem 3.2.2 hold and if s ∈ {1, . . . ,
q − p} is such that, in a neighbourhood of θ0, κs(θ) > 0 and the matrix A(θ)
depends continuously on θ, then

kDn,k(θ̂n,k)T A(θ̂n,k)Dn,k(θ̂n,k)
d−→ χ2

s, as n→∞.
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Remark 3.2.1. If Γ(θ) is invertible for all θ, then we can set s = q − p and
Ω(θ) = Γ(θ)−1. The difference between the two test statistics in Corollar-
ies 3.2.5 and 3.2.6 then converges to zero in probability, i.e., the two tests are
asymptotically equivalent under the null hypothesis.

3.2.5 Choice of the initial estimator

Our estimator in (3.2.8) is flexible enough to allow for various initial estimators,
perhaps based on exceedances over high thresholds or rather on vectors of
componentwise block maxima extracted from a multivariate time series (Bücher
and Segers, 2014). Here we will focus on the former case, and more specifically
on the empirical tail dependence function and a variant thereof.

For simplicity, we assume that the random vectors Xi, i ∈ {1, . . . , n}, are
not only identically distributed but also independent, so that they are a random
sample from F . Recall that Rnij denotes the rank of Xij among X1j , . . . , Xnj

for j = 1, . . . , d; see (1.1.1). For convenience, assume that F is continuous.

Empirical stable tail dependence function

Recall the definition of the empirical tail dependence function ̂̀′
n,k in Sec-

tion 1.3.2 and a slight modification thereof, allowing for better finite-sample
properties,

̂̀
n,k(x) :=

1

k

n∑
i=1

1

{
Rni1 > n+

1

2
− kx1 or · · · or Rnid > n+

1

2
− kxd

}
.

By Einmahl et al. (2012, Theorem 4.6), the estimator ̂̀n,k satisfies (3.2.11)
under conditions controlling the rate of convergence in (3.2.1) and the growth
rate of the intermediate sequence k = kn. The first-order partial derivatives
˙̀
j(x;θ0) of x 7→ `(x;θ0) are assumed to exist and to be continuous in neigh-

bourhoods of the points cm for which cmj > 0 for j = 1, . . . , d.
In this case, the entries of the matrix Γ(θ) in (3.2.11), for θ in the interior

of Θ, are given by

Γi,j(θ) = E[B(ci)B(cj)], i, j ∈ {1, . . . , q}. (3.2.17)

with

B(ci) := W`(ci)−
d∑
j=1

˙̀
j(ci)W`(cij ej),

and with (W`(x) : x ∈ [0,∞)d) a zero-mean Gaussian process with covariance
function

E[W`(x1)W`(x2)] = `(x1) + `(x2)− ` (max(x1,x2)) .
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For points ci of the form eJ in (3.2.2), the expectation in (3.2.17) can be
calculated as follows: for non-empty subsets J and K of {1, . . . , d},

E[B(eJ)B(eK)] = `J + `K − `J∪K −
∑
j∈J

˙̀
j,J (1 + `K − `{j}∪K)

−
∑
k∈K

˙̀
k,K (`J + 1− `J∪{k})

+
∑
j∈J

∑
k∈K

˙̀
j,J

˙̀
k,K (2− `{j,k}),

where `J := `(eJ ;θ0) and ˙̀
j,J := ˙̀

j(eJ ;θ0).

Bias-corrected estimator

A drawback of ̂̀n,k is its possibly quickly growing bias as k increases. Recently,
two bias-corrected estimators have been proposed. We consider here the kernel-
type estimator of Beirlant et al. (2016), which is partly based on (the one in)
Fougères et al. (2015).

Consider first a rescaled version of ̂̀′n,k, defined as ̂̀n,k,a(x) := a−1 ̂̀′
n,k(ax)

for a > 0. Then define the weighted average

˘̀
n,k(x) :=

1

k

k∑
j=1

K(aj) ̂̀n,k,aj (x), aj :=
j

k + 1
, j ∈ {1, . . . , k}, (3.2.18)

where K is a kernel function, i.e., a positive function on (0, 1) such that∫ 1

0
K(u) du = 1.
In addition to (3.2.1), we assume there exist a positive function α on (0,∞)

tending to 0 as t ↓ 0 and a non-zero function M on [0,∞)d such that for all
x ∈ [0,∞)d,

M(x) = lim
t↓0

1

α(t)

[
P [∃j ∈ {1, . . . , d} : 1− Fj(X1j) ≤ txj ]

t
− `(x)

]
(3.2.19)

Moreover, we assume a third-order condition on ` (Beirlant et al., 2016, equa-
tion (3)). In Beirlant et al. (2016, Theorem 1) the asymptotic distribution of
˘̀
n,k in (3.2.18) is derived under these three assumptions and for intermediate

sequences k = kn growing faster than the ones considered above. A non-zero
asymptotic bias term arises and the idea is to estimate and remove it, thereby
obtaining a possibly more accurate estimator.

In order to achieve this bias reduction, the rate function, α, and its index
of regular variation, β, need to be estimated. Consider another intermediate
sequence k1 = k1,n such that k/k1 → 0 as n→∞. The bias-corrected estimator
is then defined as

`n,k,k1(x) :=
˘̀
n,k(x)− (k1/k)β̂k1 (x)α̂k1(x) 1

k

∑k
j=1K(aj)a

−β̂k1 (x)

j

1
k

∑k
j=1K(aj)

,
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where α̂k1 and β̂k1 are the estimators of α and β defined in Beirlant et al. (2016).
Under the mentioned conditions, asymptotic normality as in (3.2.11) holds,

where the limiting random vector is equal in distribution to
∫ 1

0
K(u)u−1/2 du

times the one corresponding to ̂̀n,k. Here, the growth rate of k can be taken

faster than when using ̂̀n,k.

A simple choice for K is a power kernel, i.e, K(t) = (τ + 1)tτ for t ∈ (0, 1)

and τ > −1/2. Then
∫ 1

0
K(u)u−1/2 du = (2+τ)/(1+2τ). Note that this factor

tends to 1 if τ → ∞. In practice, we take τ = 5 as recommended in Beirlant
et al. (2016).

3.3 Simulation studies

We conduct simulation studies for data in the max-domain of attraction of the
logistic model, the Brown–Resnick process and the max-linear model. For each
model, we report the empirical bias, standard deviation, and root mean squared
error (RMSE) of our estimators. We also study the finite-sample performance
of the goodness-of-fit statistic of Corollary 3.2.5. All simulations were done in
the R statistical software environment (R Core Team, 2015) and all functions
used in this chapter are part of the R package tailDepFun; see Chapter 4.

3.3.1 Logistic model

Recall that the d-dimensional logistic model has stable tail dependence function

`(x; θ) =
(
x

1/θ
1 + · · ·+ x

1/θ
d

)θ
, θ ∈ [0, 1].

The domain-of-attraction condition (3.2.1) holds for instance if F has continu-
ous margins and its copula is Archimedean with generator φ(t) = 1/(tθ + 1),
also known as the outer power Clayton copula (Hofert et al., 2015).

Comparison with likelihood methods
In Huser et al. (2015), a comprehensive comparison of likelihood estimators

for θ has been performed based on random samples from this copula. We
compare those results to our extremal coefficients estimator, i.e., the weighted
least squares estimator based on points cm of the form eJ , with J ranging in
the collection

Qa :=
{
J ⊂ {1, . . . , d} : |J | = a

}
(3.3.1)

for a ∈ {2, 3}. Moreover, we let Ω(θ) be the identity matrix, since by exchange-
ability of the model, a weighting procedure can bring no improvements.

Following Huser et al. (2015, Section 4.2), we simulated 10 000 random
samples of size n = 10 000 from the outer power Clayton copula. For the
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likelihood-based estimators, the margins are standardized to the unit Pareto
scale via the rank transformation

X∗ij :=
n

n+ 1/2−Rnij
, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

We take d ∈ {2, 5, 10, 15, 20, 25, 30} and θ0 ∈ {0.3, 0.6, 0.9, 0.95} as in Huser
et al. (2015, Section 4.2). Note that in the likelihood setting, this is a very
demanding experiment, and three of the ten likelihood-based estimators con-
sidered in Huser et al. (2015) are only computed for d ∈ {2, 5, 10}. In Huser
et al. (2015), threshold probabilities are set to 0.98, corresponding to k = 200
in our set-up.

Figures 3.1 and 3.2 show the bias, standard deviation and RMSE of three
estimators based on the empirical tail dependence function: the two extremal
coefficient estimators mentioned above and the pairwise M-estimator from Ein-
mahl et al. (2016a) as implemented in the R package tailDepFun (Kiriliouk,
2016). As the tuple size changes from pairs to triples, the absolute bias in-
creases but the standard deviation decreases. When dependence is strong,
θ0 = 0.3, the gains in variance offset the losses in bias and the estimator based
on Q3 performs best. Note also that when the dependence is not too weak,
the estimators based on extremal coefficients perform better than the pairwise
M-estimator of Einmahl et al. (2016a). Finally, our estimation procedures have
almost constant RMSE as the dimension increases, in line with the pairwise
composite likelihood methods studied in Huser et al. (2015).

Comparing these results to the ten likelihood-based estimators in Huser
et al. (2015, Figure 4), we see that our estimators are strong competitors in the
sense that they rank highly when comparing RMSEs, and are not dominated
by one of the likelihood-based estimators. More precisely, for θ0 = 0.3, only the
likelihood estimators based on the Poisson process representation (Coles and
Tawn, 1991) and the multivariate generalized Pareto distribution outperform
our estimators; for θ0 = 0.6, the same two likelihood estimators outperform
ours, but only for d ≥ 15; finally, for θ0 = 0.9 and θ0 = 0.95 only the pairwise
censored likelihood estimator (Huser and Davison, 2014) has a smaller RMSE
than our estimators.

Coverage probabilities
We are interested in the 95% coverage probabilities of our estimators, i.e.,

in the proportion of time that the 95% confidence interval contains the true
parameter value θ0. To this end, we simulate 1000 replications from the five-
dimensional logistic model with sample size n = 1000, for a range of parameter
values θ0 ∈ {0.3, 0.6, 0.9, 0.95} and values k ∈ {50, 100, 150, 200}. Table 3.1
shows the results for the weighted least squares estimator for Q3 based on the
empirical tail dependence function and on the bias-corrected tail dependence
function; results for Q2, not shown here, are slightly worse. We see that the
coverage probabilities decrease dramatically for the empirical tail dependence
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Figure 3.1: Bias, standard deviation and RMSE for estimators of θ0 = 0.3 (left)
and θ0 = 0.6 (right) for the outer power Clayton copula; 10 000 samples of size
n = 10 000. Standard errors and RMSEs are displayed on a logarithmic scale.
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Figure 3.2: Bias, standard deviation and RMSE for estimators of θ0 = 0.9 (left)
and θ0 = 0.95 (right) for the outer power Clayton copula; 10 000 samples of
size n = 10 000. Standard errors and RMSEs are displayed on a logarithmic
scale.
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function as k increases. The bias-corrected tail dependence function seems to
do a good job correcting the bias for larger k, leading to reasonable coverage
probabilities.

Empirical Bias-corrected

k 50 100 150 200 50 100 150 200

θ0 = 0.3 95.0 80.7 53.2 23.4 93.9 84.6 78.2 73
θ0 = 0.6 97.3 75.7 19.3 0.3 97.6 94.9 91.7 88.8
θ0 = 0.9 98.0 41.2 0.1 0.0 99.3 97.8 97.3 95.9
θ0 = 0.95 98.5 26.6 0.0 0.0 99.1 98.7 97.4 96.2

Table 3.1: Observed coverage probabilities for the weighted least squares es-
timator based on the empirical tail dependence function (left) and the bias-
corrected tail dependence function (right) for the logistic model in d = 5 for
nominal coverage probabilities of 95%; 1000 samples of n = 1000.

3.3.2 Brown–Resnick process

Let s1, . . . , sd represent d locations in S ⊂ R2. Recall the definition of the
Brown–Resnick process from Subsections 1.4.2 and 2.3.1. From Huser and
Davison (2013), we obtain the following representation for the extremal coeffi-
cients `J in (3.2.3),

`J =
∑
j∈J

Φd−1(ζ(j); Υ(j)), J ⊂ {1, . . . , d}, J 6= ∅,

where ζ(j) = (ζ
(j)
1 , . . . , ζ

(j)
j−1, ζ

(j)
j+1, . . . , ζ

(j)
d ) with ζ

(j)
i =

√
γ(sj − si)/2, and

where Υ(j) is a (d− 1)× (d− 1) correlation matrix with entries given by

Υ
(j)
ik =

γ(sj − si) + γ(sj − sk)− γ(si − sk)

2
√
γ(sj − si) γ(sj − sk)

, i, k ∈ {1, . . . , d} \ {j}.

We simulate 300 random samples of size n = 1000 from the Brown–Resnick
process on a 3× 4 unit distance grid using the R package SpatialExtremes (Rib-
atet, 2015). To arrive at a more realistic estimation problem, we perturb the
samples thus obtained with additive noise, i.e., if Yi = (Yi1, . . . , Yid) is an ob-
servation from the Brown–Resnick process, then we set Xij = Yij + |εij | for
i = 1, . . . , n and j = 1, . . . , d, where εij are independent N (0, 1/4) random
variables.

We estimate the parameter vector θ0 = (α, ρ) = (1, 1) using the extremal
coefficient estimator based on the subset of Q2 in (3.3.1) consisting of pairs
of neighbouring locations, i.e., locations that are at most a distance

√
2 apart.
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This leads to q = 29 pairs. Including pairs of locations that are further away
tends to drastically increase the bias (Einmahl et al., 2016a).

Figure 3.3 shows the bias, standard deviation and RMSE for three estim-
ators: the estimator based on the empirical tail dependence function with
Ω(θ) = Γ(θ)−1 (solid lines), the estimator based on the bias-corrected tail
dependence function with Ω(θ) = Γ(θ)−1 (dotted lines), and the pairwise M-
estimator from Einmahl et al. (2016a) (dashed lines). We see that for the
estimation of the shape parameter α = 1 it is better to use one of the estim-
ators based on the empirical stable tail dependence function, whereas for the
scale parameter ρ = 1 the bias-corrected estimator performs better.

To show the feasibility of the estimation procedure in high dimensions,
we simulate 300 samples of size n = 1000 from the perturbed Brown–Resnick
process on a 10×15 unit-distance grid (d = 150), using again (α, ρ) = (1, 1) and
selecting pairs of neighbouring locations only, yielding q = 527 pairs in total.
Figure 3.4 show the bias, standard deviation and RMSE for the estimator based
on the empirical tail dependence function with Ω(θ) = Iq (solid lines), the
estimator based on the bias-corrected tail dependence function with Ω(θ) =
Iq (dotted lines), and the pairwise M-estimator from Einmahl et al. (2016a)
(dashed lines). Compared to d = 12 above, the estimation of α has improved
whereas the estimation quality of ρ stays roughly the same.

3.3.3 Max-linear models on directed acyclic graphs

Recall the definition of a max-linear model from Subsection 1.3.4; it has stable
tail dependence function

`(x) =

r∑
t=1

max
j=1,...,d

bjtxj , x ∈ [0,∞)d, (3.3.2)

where the factor loadings bjt are non-negative constants such that
∑r
t=1 bjt = 1

for every j ∈ {1, . . . , d} and all column sums of the d × r matrix B := (bjt)j,t
are positive. Since the rows of B sum up to one, it has only d × (r − 1) free
elements. Further structure may be added to the coefficient matrix B, leading
to parametric models whose parameter dimension is lower than d× (r− 1); see
below. Even then, the map L in (3.2.5) induced by restricting the points cm
to be of the form eJ in (3.2.2) is typically not one-to-one. Therefore, we really
need more general choices of the points cm in the definition of the estimator.

In Gissibl and Klüppelberg (2015), a link is established between max-linear
models and structural equation models, from which graphical models based on
directed acyclic graphs (DAGs) can be constructed. A max-linear structural
equation model is defined via

Yj = max
k∈pa(j)

ukjYk ∨ ujZj , j = 1, . . . , d,

where pa(j) ⊂ {1, . . . , d} denotes the set of parents of node j in the graph, ukj >
0 for all k ∈ pa(j)∪ {j} and uj > 0 for all j ∈ {1, . . . , d}. We let Z1, . . . , Zd be
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Figure 3.3: Bias, standard deviation and RMSE for estimators of α = 1 (left)
and ρ = 1 (right) for the perturbed 12-dimensional Brown–Resnick process;
300 samples of size n = 1000.
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Figure 3.4: Bias, standard deviation and RMSE for estimators of α = 1 (left)
and ρ = 1 (right) for the perturbed 150-dimensional Brown–Resnick process;
300 samples of size n = 1000.
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independent unit Fréchet random variables. A max-linear structural equation
model can then be written as a max-linear model with parameters determined
by the paths of the corresponding graph.

We focus on the four-dimensional model corresponding to the following
directed acyclic graph (Gissibl and Klüppelberg, 2015, Example 2.1):

u12 u13

u24 u34

Y1

Y2 Y3

Y4

Y1 = u1Z1,

Y2 = u12Y1 ∨ u2Z2 = u12u1Z1 ∨ u2Z2,

Y3 = u13Y1 ∨ u3Z3 = u13u1Z1 ∨ u3Z3,

Y4 = u24Y2 ∨ u34Y3 ∨ u4Z4

= (u24u12u1 ∨ u34u13u1)Z1 ∨ u24u2Z2

∨ u34u3Z3 ∨ u4Z4.

Note that we rewrote the max-linear structural equation model to resemble
the construction (1.3.16). If we require Y1, . . . , Y4 to be unit Fréchet, we need
to set u1 = 1 and the matrix of factor loadings becomes

B =


1 0 0 0
u12 u2 0 0
u13 0 u3 0

u12u24 ∨ u13u34 u2u24 u3u34 u4

 ,

where the diagonal elements uj for j ∈ {2, 3, 4} are such that the row sums are
equal to one. The parameter vector is then given by θ = (u12, u13, u24, u34).

We conduct a simulation study based on 300 samples of size n = 1000
from the four-dimensional model with tail dependence function (3.3.2) and B
as above, with parameter vector θ0 = (0.3, 0.8, 0.4, 0.55). As before, we put
Xij = Yij + |εij |, with (Yi1, . . . , Yid) as above and εij independent N (0, 1/4)
random variables. The estimators are based on the q = 72 points cm on the
grid {0, 1/2, 1}4 having at least two positive coordinates.

Figures 3.5 and 3.6 show the bias, standard deviation and RMSE for the
estimator based on the empirical tail dependence function with Ω(θ) = Γ(θ)−1

(solid lines), the estimator based on the bias-corrected tail dependence function
with Ω(θ) = Γ(θ)−1 (dotted lines) and the pairwise M-estimator from Einmahl
et al. (2016a) (dashed lines). The difference between the pairwise M-estimator
and our estimators based on the empirical tail dependence function is negligible.
The estimators based on the empirical tail dependence function perform better
than the ones based on the bias-corrected version, especially for the parameters
u13 and u24.

Remark 3.3.1. For the weight matrix, we actually defined Ω(θ) as (Γ(θ) +
aIq)

−1 for some small a > 0. The reason for applying such a Tikhonov cor-
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Figure 3.5: Bias, standard deviation and RMSE for estimators of u12 = 0.3
(left) and u13 = 0.8 (right) for the max-linear structural equation model based
on a directed acyclic graph; 300 samples of size n = 1000.
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Figure 3.6: Bias, standard deviation and RMSE for estimators of u24 = 0.4
(left) and u34 = 0.55 (right) for the max-linear structural equation model
based on a directed acyclic graph; 300 samples of size n = 1000.
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rection is that some eigenvalues of Γ(θ) are (near) zero, which can in turn be
due to the fact that for max-linear models such as this one, `(cm;θ) may hit
its lower bound max(cm,1, . . . , cm,d) for some m ∈ {1, . . . , q}.

3.3.4 Goodness-of-fit test

We compare the performance of the goodness-of-fit test presented in Corol-
lary 3.2.5 to the three goodness-of-fit test statistics κn, ω2

n, and A2
n proposed

in Can et al. (2015, page 18). In the simulation study there, the observed
rejection frequencies are reported at the 5% significance level under null and
alternative hypotheses for two bivariate models for `; a bivariate logistic model
with θ ∈ (0, 1) and

`(x1, x2;ψ) = (1− ψ)(x1 + x2) + ψ
√
x2

1 + x2
2, ψ ∈ (0, 1),

i.e., a mixture between a logistic model with parameter 1/2 and tail independ-
ence. For both models, they generate 300 samples of size n = 1500 from a
“null hypothesis” distribution function, for which the model is correct, and 100
samples of n = 1500 from an “alternative hypothesis” distribution function,
for which the model is incorrect. These distribution functions are described in
equations (32), (33), (35), and (36) of Can et al. (2015). We take k = 200 and
m = 1, . . . , 4 with cm ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)}.

Table 3.2 shows the observed fractions of Type I errors under the null hypo-
theses and the observed fraction of rejections under the alternative hypotheses.
The results for κn, ω2

n, and A2
n are taken from Can et al. (2015, Table 1). We

see that our goodness-of-fit test performs comparably to the test statistics in
Can et al. (2015).

Null Alternative

logistic mixture logistic mixture

κn 19/300 9/300 92/100 97/100
ω2
n 11/300 13/300 90/100 97/100
A2
n 17/300 18/300 95/100 100/100

kfn,k(θ̂n,k) 16/300 14/300 100/100 82/100

Table 3.2: Observed rejection frequencies at the 5% significance level under
null and alternative hypotheses.

It should be noted that the texts are of very different nature. The three test
statistics in Can et al. (2015) are functionals of a transformed empirical process
and are therefore of omnibus-type. The results in there are based on the full
max-domain of attraction condition on F and the procedure is computation-
ally complicated and therefore difficult to apply in dimensions (much) higher
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than two. The present test only performs comparisons at q points and avoids
integration. Therefore it is computationally much easier to apply in dimension
d > 2.

3.4 Tail dependence in European stock markets

We analyze data from the EURO STOXX 50 Index, which represents the per-
formance of the largest 50 companies among 19 different “supersectors” within
the 12 main Eurozone countries. Since Germany (DE) and France (FR) to-
gether form 68% of the index, we will focus on these two countries only. Every
company belongs to a supersector, of which there are 19 in total. We select
two of them as an illustration: chemicals and insurance. We study the follow-
ing five stocks: Bayer (DE, chemicals), BASF (DE, chemicals), Allianz (DE,
insurance), Axa (FR, insurance), and Airliquide (FR, chemicals), and we take
the weekly negative log-returns of the stock prices of these companies from
http://finance.yahoo.com/ for the period January 2002 to November 2015,
leading to a sample of size n = 711.

We fit a structural equation model based on the directed acyclic graph given
in Figure 3.7. Germany and France are represented by their national stock
market indices, the DAX and the CAC40, respectively, while the supersectors
chemicals and insurance are represented by the corresponding sub-indices of
the EURO STOXX 50 Index. Note that this is a model for the tail dependence
function only, i.e., we only assume that the joint distribution of the negative
log-returns has tail dependence function ` as in (3.3.2) with coefficient matrix
B given in Table 3.3. We have d = 10 and the parameter vector is given by
θ = (u12, u13, u14, u15, u26, u46, u27, u47, u38, u48, u39, u59, u2,10, u5,10).

We perform the goodness-of-fit test described in Corollary 3.2.6, based on
the q = 1140 points cm in the grid {0, 1/2, 1}8 having either two or three
non-zero coordinates. We take Ω(θ) = Iq, k = 40, and we choose s such that
κs > 0.1, leading in this case to s = 11. The value of the test statistic is 5.28;
the 95% quantile of a χ2

11 distribution is 19.68, so that the tail dependence
model is not rejected.

The resulting parameter estimates are pictured at the edges of Figure 3.7,
where the relative width of each edge is proportional to its parameter value.
The standard errors are given in parentheses. We note that, except for Allianz,
the influence of the stock market indices DAX and CAC40 is (much) stronger
than the influence of the sector indices chemicals and insurance.

The univariate sample extremograms (Davis and Mikosch, 2009) suggest
that there is some temporal dependence in most of our weekly stock return
series. This dependence is limited to short-range dependence, i.e., two time
points are independent provided they are far enough apart. In Bücher and
Volgushev (2013), it is shown that the empirical copula is asymptotically nor-
mal under various weak dependence concepts; similar results could be deduced
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Figure 3.7: European stock market data: DAG with 14 parameters, whose
estimates are shown near the corresponding edges. The relative width of each
edge is proportional to its parameter value. The bottom row shows the estim-
ated diagonal elements u6, . . . , u10 of the matrix B in Table 3.3.



1 0 0 0 0 0 0 0 0 0
u12 u2 0 0 0 0 0 0 0 0
u13 0 u3 0 0 0 0 0 0 0
u14 0 0 u4 0 0 0 0 0 0
u15 0 0 0 u5 0 0 0 0 0

u12u26 ∨ u14u46 u2u26 0 u4u46 0 u6 0 0 0 0
u12u27 ∨ u14u47 u2u27 0 u4u47 0 0 u7 0 0 0
u13u38 ∨ u14u48 0 u3u38 u4u48 0 0 0 u8 0 0
u13u39 ∨ u15u59 0 u3u39 0 u5u59 0 0 0 u9 0
u12u2,10 ∨ u15u5,10 u2u2,10 0 0 u5u5,10 0 0 0 0 u10



Table 3.3: European stock market data: coefficient matrix B of the max-linear
model stemming from the directed acyclic graph in Figure 3.7. The diagonal
elements ui, for i = 2, . . . , 10 are such that the rows sum up to one.
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for the empirical tail dependence function. Although the consistency of our
estimator would still hold, the asymptotic variance matrix is no longer correct
in the presence of serial dependence, so that standard errors and the optimal
weight matrix are not entirely accurate.

Another concern is the (non)stationarity of our data, especially since our
period of study contains the 2008/2009 financial crisis. To investigate whether
the parameter estimates obtained in Figure 3.7 are stable over different time
periods, we estimate our model parameters over a rolling window of five years
starting from the beginning of every calendar year, i.e., for the time periods
January 2002 - January 2007, January 2003 - January 2008, etc. The parameter
estimates of the parameters u12, u13, u14, u15 (characterizing the influence of
the EURO STOXX index on the DAX, the CAC40 and on the sub-indices
chemicals and insurance) changed only slightly, i.e., within the range of their
standard errors as shown in Figure 3.7. The parameter estimates of the factors
characterizing the influence of the DAX, CAC40 and the two sub-indices on the
stocks show a bit more variation, especially for the parameters that are near
zero such as u27, u48, and u2,10; these are estimated anywhere between 0 and
0.5. In general, we can say that estimates of factors that have a large influence
(i.e., estimates near one) fluctuate much less than estimates of factors that have
a small influence (i.e., estimates near zero). However, these variations are still
smaller than the ones stemming from the choice of k.

3.A Proofs

Proof of Theorem 3.2.1. This proof follows the same lines as the proof of The-
orem 2.2.1 in Chapter 2; most differences are due to the continuous updating
procedure. Let ε0 > 0 be such that the closed ball Bε0(θ0) = {θ : ‖θ − θ0‖ ≤
ε0} is a subset of Θ; such an ε0 exists since θ0 is an interior point of Θ. Fix

ε > 0 such that 0 < ε ≤ ε0. Let, more precisely than in (3.2.8), Θ̂n,k be the
set of minimizers of the right-hand side of (3.2.8). We show first that

P[Θ̂n,k 6= ∅ and Θ̂n,k ⊂ Bε(θ0)]→ 1, n→∞. (3.A.1)

Because L is a homeomorphism, there exists δ > 0 such that for θ ∈ Θ,
‖L(θ)− L(θ0)‖ ≤ δ implies ‖θ − θ0‖ ≤ ε. Equivalently, for every θ ∈ Θ such
that ‖θ − θ0‖ > ε we have ‖L(θ)− L(θ0)‖ > δ. Define the event

An =

{
‖L(θ0)− L̂n.k‖ <

δ
√
λ1(θ)

(1 +
√
λ1(θ)) max(1,

√
λq(θ0))

}
.

If θ ∈ Θ is such that ‖θ − θ0‖ > ε, then on the event An, we have

‖Dn,k(θ)‖Ω(θ) ≥
√
λ1(θ)‖Dn,k(θ)‖

≥
√
λ1

∥∥∥L(θ0)− L(θ)−
(
L(θ0)− L̂n,k

)∥∥∥
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≥
√
λ1

(
‖L(θ0)− L(θ)‖ − ‖L(θ0)− L̂n,k‖

)
>
√
λ1

(
δ − δ

√
λ1

1 +
√
λ1

)
=

δ
√
λ1

1 +
√
λ1

.

It follows that on An,

inf
θ:‖θ−θ0‖>ε

‖Dn,k(θ)‖Ω(θ) ≥
δ
√
λ1

1 +
√
λ1

>
√
λq(θ0)‖L(θ0)− L̂n,k‖

≥ ‖L(θ0)− L̂n,k‖Ω(θ0)

≥ inf
θ:‖θ−θ0‖≤ε

‖L(θ)− L̂n,k‖Ω(θ).

The infimum on the right-hand side is actually a minimum since L is continuous
and Bε(θ0) is compact. Hence on An the set Θ̂n,k is non-empty and Θ̂n,k ⊂
Bε(θ0). To show (3.A.1), it remains to prove that P[An] → 1 as n → ∞, but
this follows from (3.2.10).

Next we will prove that, with probability tending to one, Θ̂n,k has exactly
one element, i.e., the function fn,k has a unique minimizer. To do so, we
will show that there exists ε1 ∈ (0, ε0] such that, with probability tending to
one, the Hessian of fn,k is positive definite on Bε1(θ0) and thus fn,k is strictly
convex on Bε1(θ0). In combination with (3.A.1) for ε ∈ (0, ε1], this will yield
the desired conclusion.

For θ ∈ Θ, define the symmetric p× p matrix H(θ;θ0) by

(H(θ;θ0))i,j := 2

(
∂L(θ)

∂θj

)T
Ω(θ)

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj∂θi

)T
Ω(θ)

(
L(θ0)− L(θ)

)
− 2

(
∂L(θ)

∂θi

)T
∂Ω(θ)

∂θj

(
L(θ0)− L(θ)

)
− 2

(
∂L(θ)

∂θj

)T
∂Ω(θ)

∂θi

(
L(θ0)− L(θ)

)
+
(
L(θ0)− L(θ)

)T ∂2Ω(θ)

∂θj∂θi

(
L(θ0)− L(θ)

)
,

for i, j ∈ {1, . . . , p}. The map θ 7→ H(θ;θ0) is continuous and

H(θ0) := H(θ0;θ0) = 2 L̇(θ0)T Ω(θ0) L̇(θ0), (3.A.2)

is a positive definite matrix. This p× p matrix is non-singular, since the q × q
matrix Ω(θ0) is non-singular and the q × p matrix L̇(θ0) has rank p (recall
q ≥ p). Let ‖ · ‖ denote the spectral norm of a matrix. From Weyl’s perturb-
ation theorem (Jiang, 2010, page 145), there exists an η > 0 such that every
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symmetric matrix A ∈ Rp×p with ‖A−H(θ0)‖ ≤ η has positive eigenvalues
and is therefore positive definite. Let ε1 ∈ (0, ε0] be sufficiently small such that
the second-order partial derivatives of L and Ω are continuous on Bε1(θ0) and
such that ‖H(θ;θ0)−H(θ0)‖ ≤ η/2 for all θ ∈ Bε1(θ0).

Let Hn,k,Ω(θ) ∈ Rp×p denote the Hessian matrix of fn,k. Its (i, j)-th ele-
ment is(
Hn,k,Ω(θ)

)
ij

=
∂2

∂θj∂θi

[
Dn,k(θ)T Ω(θ)Dn,k(θ)

]
=

∂

∂θj

[
−2Dn,k(θ)T Ω(θ)

∂L(θ)

∂θi
+Dn,k(θ)T

∂Ω(θ)

∂θi
Dn,k(θ)

]
= 2

(
∂L(θ)

∂θj

)T
Ω(θ)

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj∂θi

)T
Ω(θ)Dn,k(θ)

− 2

(
∂L(θ)

∂θi

)T
∂Ω(θ)

∂θj
Dn,k(θ)

− 2

(
∂L(θ)

∂θj

)T
∂Ω(θ)

∂θi
Dn,k(θ)

+Dn,k(θ)T
∂2Ω(θ)

∂θj∂θi
Dn,k(θ).

Since Dn,k(θ) = L̂n,k −L(θ) and since L̂n,k converges in probability to L(θ0),
we obtain

sup
θ∈Bε1 (θ0)

‖Hn,k,Ω(θ)−H(θ;θ0)‖ p−→ 0, n→∞. (3.A.3)

By the triangle inequality, it follows that

P
[

sup
θ∈Bε1 (θ0)

‖Hn,k,Ω(θ)−H(θ0)‖ ≤ η
]
→ 1, n→∞. (3.A.4)

In view of our choice for η, this implies that, with probability tending to one,
Hn,k(θ) is positive definite for all θ ∈ Bε1(θ0), as required.

Proof of Theorem 3.2.2. Let ∇fn,k(θ), a 1 × q vector, be the gradient of fn,k
at θ. By (3.2.11), we have

√
k∇fn,k(θ0) = −2

√
kDn,k(θ0)T Ω(θ0) L̇(θ0)

+
√
kDn,k(θ0)T

(
∇Ω(θ)|θ=θ0

)
Dn,k(θ0) (3.A.5)

= −2
√
kDn,k(θ0)T Ω(θ0) L̇(θ0) + oP (1), (3.A.6)

as n → ∞. Since θ̂n,k is a minimizer of fn,k, we have ∇fn,k(θ̂n,k) = 0. An

application of the mean value theorem to the function t 7→ ∇fn,k
(
θ0 + t(θ̂n,k−
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θ0)
)

at t = 0 and t = 1 yields

0 = ∇fn,k(θ̂n,k)T = ∇fn,k(θ0)T +Hn,k,Ω(θ̃n,k) (θ̂n,k − θ0), (3.A.7)

where θ̃n,k is a random vector on the segment connecting θ0 and θ̂n,k and
Hn,k,Ω is the Hessian matrix of fn,k as in the proof of Theorem 3.2.1. Since

θ̂n,k
p−→ θ0, we have θ̃n,k

p−→ θ0 as n → ∞ too. By (3.A.3) and (3.A.2) and
continuity of θ 7→ H(θ;θ0), it then follows that

Hn,k,Ω(θ̃n,k)
p−→ H(θ0) = 2L̇(θ0)T Ω(θ0) L̇(θ0), as n→∞. (3.A.8)

Since H(θ0) is non-singular, the matrix Hn,k,Ω(θ̃n,k) is non-singular with prob-
ability tending to one as well. Combine equations (3.A.6), (3.A.7) and (3.A.8)
to see that

√
n
(
θ̂n,k − θ0

)
= −Hn,k,Ω(θ̃n,k)−1

√
k∇fn,k(θ0)T + op(1)

=
(
L̇(θ0)TΩ(θ0)L̇(θ0)

)−1
L̇(θ0)TΩ(θ0)

√
kDn,k(θ0) + op(1),

as n → ∞. Convergence in distribution to the stated normal distribution
follows from (3.2.11) and Slutsky’s lemma.

Proof of Corollary 3.2.4. Since Dn,k(θ) = L̂n,k − L(θ), we have

√
kDn,k(θ̂n,k) =

√
kDn,k(θ0)−

√
k
(
L(θ̂n,k)− L(θ0)

)
.

By (3.2.12) and the delta method, we have

√
k
(
L(θ̂n,k)− L(θ0)

)
= L̇
√
k(θ̂n,k − θ0) + op(1)

= L̇ (L̇TΩL̇)−1L̇TΩ
√
kDn,k(θ0) + op(1)

= P (θ0)
√
kDn,k(θ0) + op(1), as n→∞,

where L̇ and Ω are evaluated at θ0. Combination of the two previous displays
yields

√
kDn,k(θ̂n,k) = (Iq − P (θ0))

√
kDn,k(θ0) + op(1), as n→∞.

By (3.2.11) and Slutsky’s lemma, we arrive at (3.2.16), as required.
The q× q matrix P has rank p since the q× p matrix L̇ has rank p and the

q × q matrix Ω is non-singular. Since P 2 = P , it follows that rank(Iq − P ) =
rank(Iq)−rank(P ) = q − p.

Proof of Corollary 3.2.5. Equation (3.2.11) can be written as

Zn,k :=
√
kDn,k(θ0)

d−→ Z ∼ Nq(0,Γ(θ0)
)
, as n→∞.
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In view of (3.2.16) and Ω(θ) = Γ(θ)−1, we find, by Slutsky’s lemma and the
continuous mapping theorem,

k fn,k(θ̂n,k) = kDn,k(θ̂n,k)T Γ(θ̂n,k)−1Dn,k(θ̂n,k)

= ZTn,k (Iq − P (θ0))T Γ(θ̂n,k)−1 (Iq − P (θ0))Zn,k + op(1)

d−→ ZT (Iq − P (θ0))T Γ(θ0)−1 (Iq − P (θ0))Z, as n→∞;

here P = L̇ (L̇TΓ−1L̇)−1 L̇TΓ−1, with L̇ and Γ evaluated at θ0.
It remains to identify the distribution of the limit random variable. The

random vector Z is equal in distribution to Γ1/2Y , where Y ∼ Nq(0, Iq) and
where Γ1/2 is a symmetric square root of Γ. Straightforward calculation yields

ZT (Iq − P )T Γ−1 (Iq − P )Z
d
= Y T (Iq −B)Y

where B = Γ−1/2L̇ (L̇TΓ−1L̇)−1 L̇TΓ−1/2. It is easily checked that B is a pro-
jection matrix (B = BT = B2). Moreover, B has rank p. It follows that Iq−B
is a projection matrix too and that it has rank q − p. The distribution of the
limit random variable now follows by standard properties of quadratic forms of
normal random vectors.

Proof of Corollary 3.2.6. Let Z ∼ Nq(0,Γ(θ0)), which by (3.2.11) is the limit

in distribution of
√
kDn,k(θ0). By (3.2.16) and the continuous mapping the-

orem, we have, as n→∞,

kDn,k(θ̂n,k)T A(θ̂n,k)Dn,k(θ̂n,k)

d−→ ZT (Iq − P (θ0))T A(θ0) (Iq − P (θ0))Z. (3.A.9)

We can represent (Iq − P )Z as V D1/2Y , with Y ∼ Nq(0, Iq). The limiting
random variable in (3.A.9) is then given by

Y TD1/2V T VsD
−1
s V Ts V D

1/2Y .

Since V is an orthogonal matrix, this expression simplifies to
∑s
j=1 Y

2
j , which

has the stated χ2
s distribution.

Proof of Remark 3.2.1. Inspection of the proofs of Corollaries 3.2.5 and 3.2.6
shows that the difference between the two test statistics converges in distribu-
tion to the random variable ZT R(θ0)Z, where Z is a certain q-variate normal
random vector and where

R(θ0) =
(
Iq − P (θ0)

)T
(Γ(θ0)−1 −A(θ0)

) (
Iq − P (θ0)

)
.

The matrix R(θ0) can be shown to be equal to zero, proving the claim of the
remark. To see why R(θ0) is zero, note first that, suppressing θ0 and writing
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Q = Iq − P , we have Q2 = Q and ΓQT = QΓ = QΓQT . Recall the eigenvalue
equation QΓQT vj = κjvj for j = 1, . . . , q. Note that κj > 0 if j ≤ s and κj = 0
if j ≥ s + 1. The eigenvalue equation implies that Qvj = vj for j ≤ s while
QΓvj = 0 for j ≥ s+1. Since the vectors v1, . . . , vq are orthogonal, we find that
the vectors v1, . . . , vs,Γvs+1, . . . ,Γvq are linearly independent. It then suffices
to show that Rvj = 0 for all j ≤ s and RΓvj = 0 for all j ≥ s + 1. The first
property follows from the fact that Γ−1vj = κ−1

j QT vj and Avj = κ−1
j vj for

j ≤ s (use the eigenvalue equation again), while the second property follows
from QΓvj = 0 for j ≥ s+ 1.





Chapter 4

The R package tailDepFun

4.1 Introduction

We illustrate the use of the tailDepFun package, which provides functions for
the estimation of tail dependence parameters for a variety of models. The
estimators that are implemented are

• The pairwise M-estimator described in Chapter 2, which will be referred
to as Mestimator in the R code.

• The continuous updating weighted least squares estimator described in
Chapter 3, which will be called WLS in the R code.

The three main functions of this package are the following:

• EstimationGumbel: estimation of the parameter of a Gumbel model, also
called a logistic model.

• EstimationMaxLinear: estimation of the parameters of a max-linear model,
possibly defined on a directed acyclic graph (DAG).

• EstimationBR: estimation of the parameters of an (anisotropic) Brown–
Resnick process.

All the above models are defined by means of their stable tail dependence
function `; see (1.3.4). Besides the main functions that are used for estimation,
functions that compute the (bias-corrected) empirical stable tail dependence
function are available as well. Finaly, the function SelectGrid aids to define a
regular grid of indices in which the stable tail dependence function should be
evaluated.
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4.2 Choosing a grid

In the definition of the weighted least squares estimator in (3.2.8), we evaluate
` in the points c1, . . . , cq ∈ [0,∞)d, with cm = (cm1, . . . , cmd) for m = 1, . . . , q
for q ≥ p, where p denotes the dimension of the parameter vector θ of `. The
function selectGrid aids in selecting these points. For instance, the grids used
in the simulation study on the logistic model in Subsection 3.3.1 for dimension
d = 5 and the weighted least squares estimator can be generated as follows

> selectGrid(cst = c(0,1), d = 5)

> selectGrid(cst = c(0,1), d = 5, nonzero = 3)

for pairs and triples respectively. For the simulation study on the Brown–
Resnick process in Subsection 3.3.2, we first need to define the locations of the
stations on a 3× 4 unit distance grid

> loc <- cbind(rep(1:3, 4), rep(1:4, each = 3))

> selectGrid(cst = c(0,1), d = 12, locations = loc,

+ maxDistance = sqrt(2))

Finally, the grid used in the simulation study on a max-linear model in Subsec-
tion 3.3.3 for the weighted least squares estimator can be generated as follows

> selectGrid(cst = c(0,0.5,1), d = 4, nonzero = c(2:4))

Note that we always set cst = c(0,1) when we want to use an estimator
based on extremal coefficients only. This function can also be used to select
the pairs for the pairwise M-estimator. Then one has to set cst = c(0,1) and
nonzero = 2, obtaining q rows, where the two ones in each row correspond to
the pair that is selected.

4.3 Logistic model

The stable tail dependence function for the logistic model is defined in (1.3.1).
We can generate observations from it using the copula package (Hofert et al.,
2015), here in three dimensions with parameter value θ = 0.5, and transform
them to unit Pareto margins using ranks.

> library(copula)

> set.seed(1)

> n <- 1000

> data <- rCopula(n = n,

+ copula = gumbelCopula(param = 1/0.5, dim = 3))

> x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))

Then, we can estimate θ using either the pairwise M-estimator
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> indices <- selectGrid(c(0,1), d = 3)

> EstimationGumbel(x, indices, k = 50,

+ method = "Mestimator")$theta

[1] 0.4123743

or using the weighted least squares estimator, based on the points cm on the
grid {0, 0.5, 1}3 having at least two positive coordinates

> indices <- selectGrid(c(0,0.5,1), d = 3,

+ nonzero = c(2,3))

> EstimationGumbel(x, indices, k = 50,

+ method = "WLS")$theta

[1] 0.4177336

In Subsection 3.3.1, we simulate from a process in the max-domain of attraction
of the Gumbel model, also known as the outer power Clayton copula (Hofert
et al., 2015). The outer power Clayton copula is the Archimedean copula with
generator ψ(t) = ψβ(tθ), where θ ∈ (0, 1] and

ψβ(t) =
1

(1 + βt)1/β
, β > 0.

We can fix β = 1 and hence focus on the generator ψ(t) = (1+ tθ)−1. A sample
from this copula for θ = 0.7 and d = 3 can be obtained using the copula package
as follows.

> opc <- opower(copClayton, thetabase = 1)

> copClayton <- onacopulaL(opc, list(theta = 1/0.7,

+ comp = c(1:3)))

> data <- rnacopula(n = n, copula = copClayton)

4.4 Brown–Resnick process

A full definition of the process and its stable tail dependence function can be
found in Example 1.3.2 and in Subsections 2.3.1 and 3.3.2. Let θ = (α, ρ, β, c)
denote the parameters of the anisotropic Brown–Resnick process, where α ∈
(0, 2], ρ > 0, β ∈ [0, π/2) and c > 0.

We first illustrate the estimation of an isotropic Brown–Resnick process
using the pairwise M-estimator. We define coordinates of four locations and
we select all pairs of locations.

> locations <- rbind(c(1,1),c(2,1),c(1,2),c(2,2))

> indices <- selectGrid(cst = c(0,1), d = 4,

+ locations = locations)

Then we generate data from the Brown–Resnick process using the SpatialEx-
tremes package (Ribatet, 2015).
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> set.seed(2)

> library(SpatialExtremes)

> x <- rmaxstab(n = 5000, coord = locations,

+ cov.mod = "brown",

+ range = 3, smooth = 1)

We calculate the estimator for k = 300. This could take a couple of minutes.

> EstimationBR(x, locations, indices, k = 300,

+ method = "Mestimator", iterate = TRUE,

+ isotropic = TRUE, Tol = 1e-04)

$theta

[1] 1.235120 2.689146

$theta_pilot

[1] 1.235124 2.689140

$covMatrix

[,1] [,2]

[1,] 0.009990198 -0.02362328

[2,] -0.023623279 0.11335579

$value

[1] 0.01474498

Standard errors are the square roots of the diagonal elements of covMatrix.
Setting iterate = TRUE means that we use the two-step optimal weighting
procedure as described in Corollary 2.2.3: theta returns the parameter estim-
ates obtained using the optimal weight matrix, which is defined as the inverse
of the matrix Σ evaluated in theta_pilot.

Next we estimate the parameters using the weighted least squares estim-
ator. We use the bias-corrected stable tail dependence function (Beirlant et al.,
2016). For method = "WLS" the option iterate = TRUE means that we use the
continuous updating procedure as described in Corollary 3.2.3.

> EstimationBR(x, locations, indices, 300, method = "WLS",

+ isotropic = TRUE, biascorr = TRUE,

+ iterate = TRUE)

$theta

[1] 1.113500 3.087141

$theta_pilot

[1] 1.115788 3.092344

$covMatrix

[,1] [,2]
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[1,] 0.02644506 -0.07761775

[2,] -0.07761775 0.31759008

$value

[1] 0.006486834

Note that since we set iterate = TRUE, we can use Corollary 3.2.5 to test the
goodness-of-fit of the model. The test statistic is 300×0.006486834 = 1.94605,
which we should compare to a high quantile of the χ2

4 distribution.
If we want to mimic the two-step weighting procedure from Einmahl et al.

(2016a) instead of continuous updated weighting, we could do so as follows

> result <- EstimationBR(x, locations, indices, k = 300,

+ method = "WLS", isotropic = TRUE,

+ biascorr = TRUE, covMat = FALSE)

> Sigma <- AsymVarBR(locations, indices, method = "WLS",

+ par = result$theta_pilot)

> EstimationBR(x, locations, indices, 300, method= "WLS",

+ isotropic = TRUE, biascorr = TRUE,

+ Omega = solve(Sigma))$theta

[1] 1.115812 3.092290

If we want to estimate an isotropic Brown–Resnick process, we need to
transform the coordinates of our locations, since we can only simulate isotropic
Brown–Resnick processes. Hence, we multiply the coordinates of our locations
with V −1(β, c); see Example 1.3.3. Here we take β = 0.25 and c = 1.

> Vmat <- matrix(c(cos(0.25), 1.5*sin(0.25),

+ -sin(0.25), 1.5*cos(0.25)), nrow = 2)

> locationsAniso <- locations %*% t(solve(Vmat))

> EstimationBR(x, locationsAniso, indices, 300,

+ method = "WLS", biascorr = TRUE,

+ iterate = TRUE)$theta

[1] 1.1275481 3.1058154 0.4099169 1.5394794

Finally, some tips for the use of this function:

• If the number of locations d is small (d < 8 say), a sufficiently large sample
size (eg n > 2000) is needed to obtain a satisfying result. However, if d
is large, a sample size of n = 500 should suffice.

• The tolerance parameter is only used when calculating the three- and
four-dimensional integrals in the asymptotic covariance matrix Σ; see
Appendix 2.B in Chapter 2. A tolerance of 10−4 often suffices, although
the default tolerance is a safer choice.

• For an anisotropic process, it is advised to try a couple of starting values
if d is small, preferably a starting value with c < 1 and one with c > 1.
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• Setting iterate = TRUE has a more significant effect when d is large.

• If the number of pairs q is large, then method = "Mestimator" will be
rather slow. This is due to the calculation of the weight matrix Ω and
the covariance matrix. Setting iterate = FALSE and covMat = FALSE

will make estimation fast even for several hundreds of pairs of locations.

• method = "WLS", it is not advised to change the values of k1 or tau; the
default values are chosen as advised in Beirlant et al. (2016).

Note that an extension two triples and more general grids (i.e., where cst is
not necessarily c(0,1)) might be available in the future.

4.5 Max-linear model

The max-linear model is described in detail in Example 1.3.3 and Subsec-
tion 3.3.3. Its parameter matrix is a d×r matrix B := (bjt)j,t, where r denotes
the number of factors and d the dimension. The factor loadings bjt are non-
negative constants such that

∑r
t=1 bjt = 1 for every j ∈ {1, . . . , d} and all

column sums of B are positive. Note that B has p = d × (r − 1) free ele-
ments. The parameter vector θ ∈ Rp is defined by stacking the columns of B
in decreasing order of their sums, leaving out the column with the lowest sum.

To illustrate estimation of a 2-factor model in dimension d = 3, we simulate
data with parameter vector θ = c(b11, b12, b13) = c(0.3, 0.5, 0.9).

> set.seed(1)

> n <- 1000

> fr <- matrix(-1/log(runif(2*n)), nrow = n, ncol = 2)

> data <- cbind(pmax(0.3*fr[,1], 0.7*fr[,2]),

+ pmax(0.5*fr[,1], 0.5*fr[,2]),

+ pmax(0.9*fr[,1], 0.1*fr[,2]))

Then we transform to unit Pareto, select a grid and estimate the parameters
using the weighted least squares estimator. Note that the choice cst = c(0,1)

will usually not lead to a valid estimator; see Subsection 3.3.3.

> x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))

> indices <- selectGrid(cst = c(0,0.5,1), d = 3)

> EstimationMaxLinear(x, indices, k = 100, method = "WLS",

+ iterate = TRUE, GoFtest = TRUE,

+ startingValue = c(0.3,0.5,0.9))

$theta

[1] 0.3284527 0.5007583 0.9115711

$theta_pilot

[1] 0.3152544 0.4893125 0.8980283
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$covMatrix

[,1] [,2] [,3]

[1,] 0.0022120835 0.0021556005 0.0006626992

[2,] 0.0021556005 0.0026694102 0.0009185456

[3,] 0.0006626992 0.0009185456 0.0011039448

$value

[1] 0.2069704

$GoFresult

$GoFresult$value

[1] 1.961863

$GoFresult$s

[1] 2

The results of GoFtest permit us to do the test described in Corollary 3.2.6.
We need to compare GoFresult$value to the 95% quantile of a χ2

s distribution
with s = 2 degrees of freedom, given by 5.99. For the two-step weighting
procedure from Chapter 2 we would do

> result <- EstimationMaxLinear(x, indices, k = 100,

+ method = "WLS",

+ startingValue = c(0.3,0.5,0.9))

> Sigma <- AsymVarML(indices, par = result$theta_pilot)

> while(rcond(Sigma) < 1e-05){

+ Sigma <- Sigma + (1e-05)*diag(nrow(indices))

+ }

> EstimationMaxLinear(x, indices, 100, method = "WLS",

+ Omega = solve(Sigma),

+ startingValue = result$theta_pilot)$theta

[1] 0.3277286 0.4988443 0.9105570

The correction on Sigma is done because it is not invertible otherwise; see
Remark 3.3.1.

In the above estimation, the function EstimationMaxLinear assumed a 2-
factor model because we did not provide Bmatrix and Ldot. If we want to fit
a max-linear model based on a directed acyclic graph, for instance the one in
Gissibl and Klüppelberg (2015, Example 2.1) or Subsection 3.3.3, we need to
define a Bmatrix, corresponding to the matrix of coefficients B, and a Ldot,
corresponding to the total derivative of L(θ) = (`(cm; θ))m=1,...,q. For instance,
B is given by

> Bmatrix <- function(th){
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+ temp <- max(th[1]*th[3],th[2]*th[4])

+ B <- cbind(c(1, th[1], th[2], temp),

+ c(0, 1 - th[1], 0, (1 - th[1])*th[3]),

+ c(0, 0, 1 - th[2], (1 - th[2])*th[4]),

+ c(0, 0, 0, 1 - temp - (1 - th[1])*th[3] -

+ (1 - th[2])*th[4]))

+ return(B)

+ }

and then we generate data from the DAG as follows

> d <- r <- 4

> n <- 1000

> theta <- c(0.3, 0.8, 0.4, 0.55)

> B <- Bmatrix(theta)

> set.seed(1)

> fr <- matrix(-1/log(runif(r*n)), nrow = n, ncol = r)

> data <- cbind(B[1,1]*fr[,1],

+ pmax(B[2,1]*fr[,1], B[2,2]*fr[,2]),

+ pmax(B[3,1]*fr[,1], B[3,3]*fr[,3]),

+ pmax(B[4,1]*fr[,1], B[4,2]*fr[,2],

+ B[4,3]*fr[,3], B[4,4]*fr[,4]))

> x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))

We then estimate using a grid as in Subsection 3.3.3,

> indices <- selectGrid(cst = c(0,0.5,1), d = 4,

+ nonzero = c(2:4))

> EstimationMaxLinear(x, indices, k = 100, method = "WLS",

+ Bmatrix = Bmatrix, covMat = FALSE,

+ startingValue = c(0.3,0.8,0.4,0.55))$theta

[1] 0.3502117 0.8692499 0.4124804 0.5909954

Note that in order to calculate covMat, we would also need to provide Ldot.



Chapter 5

Peaks-over-thresholds modelling
with multivariate generalized
Pareto distributions

Abstract

Statistical modelling using multivariate generalized Pareto distribu-
tions constitutes the multivariate analogue of peaks-over-thresholds mod-
elling with the univariate generalized Pareto distribution. We recall three
different representations of a multivariate generalized Pareto distribution
described in Rootzén, Segers and Wadsworth (2016) and we propose a
construction tool which allows to generate suitable parametric tail de-
pendence models. Several concrete examples are proposed, and the dens-
ities necessary for censored likelihood estimation are derived. Finally, we
present a new parametric model for data with structured components,
and illustrate it with an application aimed at estimating the probability
of a landslide in northern Sweden.

5.1 Introduction

Peaks-over-thresholds modelling of univariate time series has been common
practice since it was proposed in Davison and Smith (1990), who advocated the
use of the asymptotically motivated generalized Pareto distribution as a model
for exceedances over high thresholds (see Subsection 1.2.2). However, many
peaks-over-thresholds data are of a multivariate nature: imagine for instance
a flooding, where the amount of damage depends on the number of dykes that
have been breached. Another example is the modelling of landslides, where a
multivariate dataset can be constructed from a univariate time series of precip-
itation measurements: here, a d-variate dataset is created by taking cumulative
sums of up to d days of precipitation amounts. This type of construction is of
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interest because a landslide might occur after either an extreme rainfall on one
day or after moderate rainfall amounts on several consecutive days.

When generalizing peaks-over-thresholds modelling from the univariate to
the multivariate setting, different definitions of what constitutes an exceedance
might arise: for instance, one might either be interested in events where all
components are large, or in events where at least one component is large;
this corresponds to the distinction between the tail copula and the stable tail
dependence function, presented in Subsection 1.3.1. Here we consider the latter,
as we did in the previous chapters.

The multivariate generalized Pareto (MGP) distribution was introduced
originally in Tajvidi (1996), Beirlant et al. (2004, Chapter 8) and Rootzén
and Tajvidi (2006). There has been a growing body of probabilistic literature
devoted to MGP distributions ever since; see for instance Falk and Guillou
(2008), Falk and Michel (2009), Ferreira and de Haan (2014), or Rootzén et al.
(2016). However, to our knowledge, statistical modelling using MGP distri-
butions has thusfar received relatively little attention. Some examples include
Michel (2009), where two likelihood-based estimation approaches based on the
spectral density are presented, Huser et al. (2015), where the MGP likelihood
is studied for a logistic model, and Thibaud et al. (2015), where the focus is on
so-called elliptic Pareto processes.

One of the reasons for the lack of literature on statistical modelling of
MGP distributions might be the existence of theoretically equivalent depend-
ence modelling approaches, based on a point process, that have already been
introduced in Coles and Tawn (1991). Nonetheless, the MGP distribution has
some conceptual advantages over that of the point process representation, since
it represents a proper multivariate distribution on an L-shaped region (see the
left-hand side of Figure 1.5). Furthermore, the MGP distribution permits mod-
elling of all data on this region, up to truncation from below, without the need
to perform any marginal transformation, which is common in other extremal
dependence modelling approaches.

In Chapters 2 and 3, we assumed a parametric model for the stable tail
dependence function ` and we focused on semiparametric estimation for the
parameters of ` using threshold exceedances. In this chapter, we will estimate
the parameters of models for an MGP distribution using a likelihood approach,
allowing us to model the marginal distributions jointly with the dependence
structure if the dimension of the model is not too high. Note that, since ` is
related to an MGP distribution through a simple formula, see (5.3.2) below, we
could plug in nonparametric estimators of ` to obtain nonparametric estimators
of an MGP distribution with standardized marginals.

After having fixed a high threshold, we select the episodes where at least
one component exceeds the threshold, and we model the difference between
the values of the components and the threshold. Components falling below
the threshold are then censored at the threshold. This censored likelihood
approach decreases bias (Huser et al., 2015) and avoids problems arising by
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the fact that the lower bound of a MGP distribution depends on its parameter
values. It was first introduced in Ledford and Tawn (1996) and Smith et al.
(1997), then extended to the spatial framework in Wadsworth and Tawn (2014)
and Thibaud et al. (2015). In high dimensions, sometimes a pairwise censored
likelihood procedure is used (Thibaud et al., 2013; Huser and Davison, 2014).

In Rootzén et al. (2016), three representations for an MGP distribution are
proposed, and linked to three corresponding point process models. From these
representations a convenient tool for the construction of parametric models is
deduced. This construction tool permits easy simulation from such models,
thus enabling estimation of any quantity related to the extremes of a random
vector. We present several models for potentially high-dimensional data, some
of which are identifiable as well-known tail dependence models, whereas others
are entirely new. A feature shared by all models is that their densities are
analytically computable, allowing for fast estimation.

The remainder of this chapter is structured as follows. In Section 5.2 we
recall some of the key results and properties of MGP distributions that will be
useful for statistical modelling. Section 5.3 discusses a construction device for
MGP distributions and the censored likelihood estimation procedure, whilst
concrete parametric models and their simulation are presented in Section 5.4.
Section 5.5 explains the links between the point process representations and
the MGP distribution, providing an intuitive outline of the derivation; formal
proofs can be found in Rootzén et al. (2016). Finally, an application to pre-
cipitation data, aimed at modelling landslides, is described in Section 5.6. We
derive the formulas necessary for censored likelihood inference in Appendix 5.A.

5.2 Multivariate generalized Pareto distribu-
tions

Let X = (X1, . . . , Xd) be a random vector in Rd with cumulative distribution
function F . Suppose that F is in the max-domain of attraction of a GEV dist-
ribution G (see Subsection 1.3.3) with 0 < G(0) < 1 and margins G1, . . . , Gd.
Let l = (l1, . . . , ld) denote the vector of marginal lower endpoints, i.e., lj is the
lower endpoint of Gj for j ∈ {1, . . . , d}.

The multivariate generalized Pareto distribution arises as the only possible
non-degenerate limit of X, suitably normalized, conditioned upon at least one
component ofX being extreme. Specifically, if there exist scaling and threshold
functions an ∈ (0,∞)d and bn ∈ Rd with Fj(bn,j) < 1 for all j ∈ {1, . . . , d}
and F (bn)→ 1 as n→∞, such that

P
[
max

(
X − bn
an

, l

)
≤ ·

∣∣∣∣X 6≤ bn] d−→ H( · ), as n→∞, (5.2.1)

where H has non-degenerate margins H1, . . . ,Hd and Hj(0) < 1 for all j ∈
{1, . . . , d}, then we say that H is a multivariate generalized Pareto distribution
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(Rootzén and Tajvidi, 2006). We require Hj(0) < 1 so that all components have
a positive probability of exceeding their threshold. We say that F belongs to
the threshold-domain of attraction of H. Note that F is in the max-domain of
attraction of a GEV distribution G with 0 < G(0) < 1 if and only if F is in the
threshold-domain of attraction of an MGP distribution H. The link between
H and G is given below in (5.2.3). The definition in (5.2.1) corresponds to the
ones in Rootzén and Tajvidi (2006) and Beirlant et al. (2004) but is slightly
different from the ones in Falk and Guillou (2008) or Ferreira and de Haan
(2014).

Recall that the marginal distributions of G, denoted by G1, . . . , Gd, may be
written as

Gj(x) = exp

{
−
(

1 + ξj
x− µj
σj

)−1/ξj

+

}
, x ∈ R. (5.2.2)

Define η := σ−ξµ. We will assume throughout that η > 0, which is equivalent
to Hj(0) < 1 for j = 1, . . . , d. Let wj ∈ (−∞,∞] denote the upper endpoints
of Gj for j = 1, . . . , d. Then the support of Gj , which we saw in Subsection 1.2,
can be written in terms of η and ξ as

(lj , wj) =


(−ηj/ξj ,∞) if ξj > 0,

(−∞,∞) if ξj = 0,

(−∞,−ηj/ξj) if ξj < 0.

An MGP distribution is then supported on

{y ∈ [l,w] : y � 0} = [l,w] \ [l,0].

Recall the point process defined in (1.3.12), whose intensity measure converges
to the exponent measure µ, so that the limit of the expected number of points
in a set A is equal to µ(A). Then, assuming for x > l,

H(x) = lim
n→∞

P
[
X−bn
an

≤ x
]
− P

[
X−bn
an

≤ min(0,x)
]

P
[
X−bn
an

� 0
]

=
−µ({y : y � x}) + µ({y : y � min(x,0)})

µ({y : y � 0})
.

Since the exponent measure satisfies µ({y : y � x}) = − logG(x) we have

H(x) =


1

− logG(0)
log

(
G(x)

G(min(x,0))

)
, if x > l,

0 if ∃ j : xj < lj ,

(5.2.3)

for any GEV G with 0 < G(0) < 1 (Rootzén and Tajvidi, 2006; Rootzén et al.,
2016). For x > 0, we get H(x) = 1− logG(x)/ logG(0), which is exactly like
the univariate case (1.2.4).
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Let J ⊂ {1, . . . , d} and let HJ denote the |J |-variate marginal distribution
of H. Let H+

J denote the margin HJ conditioned to have at least one positive
component. In Rootzén et al. (2016, Proposition 2.1), it is shown that, if
HJ(0) < 1, then H+

J is an MGP distribution as well, associated to a GEV
distribution GJ , i.e., the |J |-variate marginal distribution of G. Let Hj :=
H{j}. For x > 0 and j ∈ {1, . . . , d},

H+
j (x) = 1− logGj(x)

logGj(0)
= 1− (1 + ξjx/ηj)

−1/ξj
+ , (5.2.4)

is the univariate GPD, with ηj = σj − ξjµj > 0 and ξj ∈ R for j ∈ {1, . . . , d}.
The fact that HJ or Hj are typically not MGP distributions is rather intuitive,
since the conditioning event involves all d random variablesX1, . . . , Xd, whereas
HJ concerns only the variables (Xj)j∈J .

Following common practice in the statistical modelling of extremes, H may
be used as a model for data which arise as multivariate threshold exceedances
in the sense X 6≤ u. In particular, if u ∈ Rd is a threshold that is sufficiently
high in each margin, then (5.2.1) justifies the use of an MGPD as a model for
exceedances over a high threshold, since

P[X − u ≤ · |X � u] ≈ H( · /an) = H0( · ),

where H0 is some other MGP distribution. Hence, the distribution of X − u |
X � u can be approximated by a member of the class of MGP distributions,
with η, ξ and the dependence structure to be estimated. From now on, we will
do as in the univariate case and set u = 0 without loss of generality: in what
follows, we focus on threshold exceedances Z | Z � 0.

5.3 Model construction

Any vector Z = (Z1, . . . , Zd) ∈ Rd following an MGP distribution with distri-
bution function H as in (5.2.3) can be written as

Z
d
= η

eξZ
∗ − 1

ξ
, (5.3.1)

where Z∗ is a “standard form” MGP random vector, that is, an MGP vector
which is standardized to ξ = 0 and η = 1. This section discusses the con-
struction of a vector Z∗. For ξ = 0, the right-hand side of equation (5.3.1) is
simply ηZ∗. The distribution function of Z∗ will be denoted by H∗. It can be
written in terms of the stable tail dependence function (1.3.4),

H∗(x) =
`
(
eµ−min(x,0)

)
− ` (eµ−x)

`(eµ)
. (5.3.2)
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We focus on how to construct suitable densities for the random vector Z∗

in equation (5.3.1), which will lead to densities for the MGP vector Z with
general marginal forms. Let T ∼ Exp(1), and let S0 be a random vector
that satisfies P[max1≤j≤d S0,j = 0] = 1 and is independent of T . Then the
random vector Z∗ = T +S0 has the required properties to be a MGP vector on
{x ∈ Rd : x 6≤ 0} with η = 1 and ξ = 0 (interpreted as the limit); see Rootzén

et al. (2016). In terms of a general random vector S̃ ∈ [−∞,∞)d \{−∞}, with
P[Sj > −∞] > 0 for each j ∈ 1, . . . , d, this can be written as

Z∗ = T + S̃ − max
1≤j≤d

S̃j . (5.3.3)

Let fS̃ denote the density of S̃. If P[S̃j < ∞] = 1 for each j ∈ 1, . . . , d, then
the density of Z∗ defined in (5.3.3) is

h∗
S̃

(z) = 1( max
1≤j≤d

zj > 0)e−max1≤j≤d zj

∫ ∞
−∞

fS̃(z + t) dt. (5.3.4)

One way to construct models therefore is to assume different distributions for S̃,
which provide flexible forms for h, and for which ideally the integral in (5.3.4)
can be evaluated analytically. Some examples are provided in Section 5.4.

If the term e−max1≤j≤d zj in (5.3.4) is inconvenient, an alternative approach
to model construction that avoids this is proposed in Rootzén et al. (2016).
Suppose that the density fS̃ is a density formed by “tilting” another density
fS with some function b : Rd → R+, where E[b(S)] <∞, that is,

fS̃(s) =
fS(s)b(s)

E[b(S)]
,

then the form of the density is

h∗S(z) =
1(max1≤j≤d zj > 0)

E[b(S)]
e−max1≤j≤d zj

∫ ∞
−∞

fS(z + t)b(z + t) dt.

An adequate choice of b, specifically b(s) = emax1≤j≤d sj , means that the term
e−max1≤j≤d zj is eliminated, leaving the density

h∗S(z) =
1(max1≤j≤d zj > 0)

E
[
emax1≤j≤d Sj

] ∫ ∞
−∞

fS(z + t)et dt. (5.3.5)

Because of the similarity of the integrals in (5.3.4) and (5.3.4), if one can be
evaluated, then typically so can the other; the normalization constant in (5.3.4)
is often more challenging to compute. In Section 5.4 we will assume a variety
of probability distributions for either S̃ or S, computing densities (5.3.4) or
(5.3.5) respectively.
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Using transformation (5.3.1), we have a general form for MGP densities as

h(z) = h∗
(

log(1 + ξz/η)

ξ

) d∏
j=1

1

ηj + ξjzj

 . (5.3.6)

Modelling the full densities is then done by plugging in (5.3.4) or (5.3.5) in
(5.3.6).

We can obtain an alternative expression by defining the random variable
R = (η/ξ) exp(ξS) for ξ 6= 0, giving

hR(z) = 1

(
max

1≤j≤d
zj > 0

) ∫∞
0
s
∑d
j=1 ξjfR

(
sξ
(
z + η

ξ

))
ds

E
[
max1≤j≤d

(
ξjRj
ηj

)1/ξj
] , (5.3.7)

which is equal to (5.3.5) if ξ = 0 and η = 1. The motivation for the use of this
variable R will be clear in Section 5.5, where we will illustrate how to obtain
densities (5.3.4), (5.3.5) and (5.3.7) with the help of Poisson point processes.

5.4 Parametric models

Here we provide details of certain probability distributions for S̃, S and R that
generate tractable MGP distributions. The use of random vectors to generate
dependence structures for extremes is quite common, as we saw for instance
in Subsection 1.3.4. In the application we will use a censored likelihood (see
Subsection 5.6.1) and thus we should not just to be able to calculate densities,
but also integrals of those densities. For each model we give the uncensored
densities in the subsequent examples, whilst their censored versions are given
in Appendix 5.A.

5.4.1 Independent components

Let S̃ and S in (5.3.4) and (5.3.5) respectively be vectors with independent and
identically distributed components. The dependence structure of the associated
MGP distribution is determined by the relative heaviness of the tails of the
marginal distributions of S̃ or S. The support for each density given in this
subsection is {z ∈ Rd : z 6≤ 0}.

Example 5.4.1 (Gumbel). Suppose S1, . . . , Sd and S̃1, . . . , S̃d are iid Gumbel
random variables with location parameters λ1, . . . , λd ∈ R and scale parameters
α−1

1 , . . . , α−1
d > 0, i.e.,

fS(s) = fS̃(s) =

d∏
j=1

αj exp{−αj(sj − λj)} exp{− exp{−αj(sj − λj)}},
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for αj > 0 and λj > 0. Then density (5.3.4) is

h∗
S̃

(z) = e
∑d
j=1 zj−max1≤j≤d zj

×
∫ ∞

0

d∏
j=1

( αj
eλj

(
tezj−λj

)−αj−1
e−(tezj−λj )−αj

)
td−1 dt.

If α1 = · · · = αd = α then this integral can be calculated explicitly:

h∗
S̃

(z) = e−max1≤j≤d zjαd−1
Γ(d)

∏d
j=1 e

−α(zj−λj)(∑d
j=1 (ezj−λj )−α

)d .
The marginal expectation of the exponentiated variable is

E
[
eSj
]

=

{
eλjΓ(1− 1/αj), αj > 1,

∞, αj ≤ 1.
(5.4.1)

Let min1≤j≤d αj > 1. Then density (5.3.5) is

h∗S(z) = e
∑d
j=1 zj

∫∞
0

∏d
j=1

(
αj

eλj

(
tezj−λj

)−αj−1
e−(tezj−λj )−αj

)
td dt∫∞

0
1−

∏d
j=1 e

−(te−λj )−αj dt
.

If α1 = · · · = αd = α then this simplifies to:

h∗S(z) =
αd−1Γ(d− 1/α)

∏d
j=1 e

−α(zj−λj)(∑d
j=1 (ezj−λj )−α

)d−1/α

Γ(1− 1/α)
(∑d

j=1 e
αλj

)1/α
.

Observe that if in addition to α1 = · · · = αd = α, we have λ1 = · · · = λd = 0,
then this is the MGP distribution associated to the well-known logistic model;
see Example 1.3.1.

Example 5.4.2 (Log-gamma). Suppose eS1 , . . . , eSd and eS̃1 , . . . , eS̃d are iid
Gamma random variables with shape parameters α1, . . . , αd > 0 and rate para-
meters all equal to one; i.e.,

fS(s) = fS̃(s) =

d∏
j=1

exp{αjsj} exp{− exp(sj)}/Γ(αj). (5.4.2)

Recall that this is the density leading to the Dirichlet model, presented in
Example 1.3.2. Density (5.3.4) is

h∗
S̃

(z) = e−max1≤j≤d zj

d∏
j=1

(
eαjzj

Γ(αj)

)∫ ∞
0

t
∑d
j=1 αj−1 exp

−t
d∑
j=1

ezj

 dt

=
Γ(α1 + · · ·+ αd)∏d

j=1 Γ(αj)

e
∑d
j=1 αjzj−max1≤j≤d zj

(ez1 + · · ·+ ezd)α1+···+αd
.
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For density (5.3.5) we first calculate

E
[
emaxj Sj

]
=

∫ ∞
0

1− P[expS1 ≤ t, . . . , expSd ≤ t] dt

=
Γ
(∑d

j=1 αj + 1
)

∏d
j=1 Γ(αj)

∫
∆d−1

max(u1, . . . , ud)

d∏
j=1

u
αj−1
j du1:d−1,

where ∆d−1 is the unit simplex and u1:d−1 = du1 · · · dud−1. Define

Cd :=

∫
∆d−1

max(u1, . . . , ud)

d∏
j=1

u
αj−1
j du1 · · · dud−1. (5.4.3)

Then density (5.3.5) is

h∗S(z) =
1

E [emaxj Sj ]

d∏
j=1

(
eαjzj

Γ(αj)

)∫ ∞
0

t
∑d
j=1 αj exp

−t
d∑
j=1

ezj

 dt

=
1

E [emaxj Sj ]

d∏
j=1

(
eαjzj

Γ(αj)

) Γ
(∑d

j=1 αj + 1
)

(ez1 + · · ·+ ezd)α1+···+αd+1

=
exp{

∑d
j=1 αjzj}

Cd (ez1 + · · ·+ ezd)α1+···+αd+1
.

Other examples are possible as well, for instance assuming that the com-
ponents of S̃ or S are reverse Gumbel or reverse exponential variables. If we
do not want to assume that the components of our vector are independent, we
can for instance assume a Gaussian distribution, or the model presented in the
next subsection.

5.4.2 Structured components

In Subsection 5.4.1 we considered several distributions for S and S̃, assuming
they have independent components. Here we present a model for R, based
on partial sums of exponential random variables. We give the uncensored
densities for both ξ = 0 and ξ 6= 0; see (5.3.7). This model will be of interest
in Subsection 5.6, where we will focus on modelling landslides.

Case ξ = 0 Recall from (5.3.7) that the densities hR( · ) and h∗S( · ) coincide
if η = 1. Let R ∈ Rd be the random vector whose components are defined by

Rj = log

(
j∑
i=1

Ej

)
, Ej

iid∼ Exp(λj), j = 1, . . . , d, (5.4.4)
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where λ1, . . . , λd > 0 are the rate parameters, i.e.,

P[Ej > xj ] = exp (−λjxj) , xj ∈ (0,∞), j = 1, . . . , d.

The density fR is given by

fR(r) =


 d∏
j=1

λje
−rj

 exp

−
d∑
j=1

(λj − λj+1)erj

 , if r1 < · · · < rd,

0 otherwise.

where we set λd+1 := 0. Since by (5.3.3), R1 < · · · < Rd implies Z1 < · · · < Zd,
the density of Z becomes, for z1 < · · · < zd,

hR(z) =
1 (zd > 0)

E[eRd ]

 d∏
j=1

λje
zj

∫ ∞
0

td exp

−t
 d∑
j=1

(λj − λj+1)ezj

 dt

=
1(zd > 0) d!

∏d
j=1 λje

zj(∑d
j=1 λ

−1
j

)(∑d
j=1(λj − λj+1)ezj

)d+1
. (5.4.5)

Note that for any constant c > 0 the parameters (λ1, . . . , λd) and (cλ1, . . . , cλd)
lead to the same model - for identifiability we fix the value of λ1.

Case ξ > 0 Let R ∈ [0,∞)d be the random vector whose components are
defined by

Rj =

j∑
i=1

Ej , Ej
iid∼ Exp(λj), j = 1, . . . , d,

where λ1, . . . , λd > 0 are the rate parameters. The density fR is given by

fR(r) =


 d∏
j=1

λj

 exp

−
d∑
j=1

(λj − λj+1)rj

 , if r1 < · · · < rd,

0 otherwise.

where we set λd+1 = 0. Suppose that η = η1 = · · · = ηd and ξ = ξ1 = · · · = ξd.
Then

E

[
max

1≤j≤d

(
ξRj
η

)1/ξ
]

=

(
ξ

η

)1/ξ

E
[
R

1/ξ
d

]
.
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The distribution of Rd is called hypo-exponential if λi 6= λj for all i 6= j, and
we get(

ξ

η

)1/ξ

E
[
R

1/ξ
d

]
=

(
ξ

η

)1/ξ ∫ ∞
0

r1/ξfd(r) dr

=

(
ξ

η

)1/ξ d∑
i=1

λi

 d∏
j=1,j 6=i

λj
λj − λi

∫ ∞
0

r1/ξe−rλi dr

=

(
ξ

η

)1/ξ

Γ

(
1

ξ
+ 1

) d∑
i=1

λ
−1/ξ
i

 d∏
j=1,j 6=i

λj
λj − λi

 .

The density of Z becomes, for z1 > −η/ξ and zd > 0,

hR(z) =

∫∞
0
tdξ exp

{
−tξ

∑d
j=1(λj − λj+1)(zj + η/ξ)

}
dt(∏d

j=1 λ
−1
j

)(
ξ
η

)1/ξ

E
[
R

1/ξ
d

] (5.4.6)

=

(∏d
j=1 λj

)(
ξ
η

)−1/ξ

Γ
(
d+ 1

ξ

)
/Γ
(

1
ξ

)
(∑d

j=1(λj − λj+1)zj + (η/ξ)λ1

)d+1/ξ∑d
i=1 λ

−1/ξ
i

(∏d
j=1,j 6=i

λj
λj−λi

) .
Again, we fix the value of λ1 for identifiability.

5.4.3 Simulation

We focus on the simulation of a standardized MGP distributed vector Z∗, since
a non-standardized vector Z is easily obtained by expression (5.3.1). In Sec-
tion 5.3, we saw that such a vector can be simulated either from density (5.3.4)

or from density (5.3.5), i.e., starting from either a vector S̃ or a vector S.

First, note that simulation from the S̃-density is immediate because of
(5.3.3): we simulate an exponential variable T ∼ Exp(1) and a vector S̃ from

fS̃ independently, and set Z = T + S̃ − maxj=1,...,d S̃j . Simulation from the
density with S can be done by exploiting the formula

fS(s) =
emaxj=1,...,d sjfS̃(s)

E[emaxj=1,...,d S̃j ]
. (5.4.7)

If S̃ is a vector we can sample from directly, then we can use rejection sampling
to sample from the vector S as follows. Let fQ be a density such that

sup
s∈R

fS(s)

fQ(s)
= K <∞.

Then an observation from S is obtained by:
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1. Sample a vector Q from fQ.

2. Sample a uniform random variable U ∼ U(0,K).

3. If U < fS(Q)/fQ(Q), set S = Q; if not, restart at step 1.

Simulation of a density (5.3.7), based on a vector R, can either be done by
approximate simulation as described in Method 4 in Rootzén et al. (2016,
Section 6), or by simulating a vector S and setting R = exp(ξS)(σ/ξ).

Example 5.4.3. We show how to simulate from the log-gamma model, presen-
ted in Example 5.4.2. Let fS̃ be as in (5.4.2) and Cd as in (5.4.3). Then (5.4.7)
becomes

fS̃(s) =
emaxj=1,...,d sj+

∑d
j=1(αjsj−exp(sj))

CdΓ(
∑d
j=1 αj + 1)

.

Let expQj ∼ Γ(αj , β) for j = 1, . . . , d be iid random variables, where β is a
common rate parameter such that β < 1. Then we find

K =

∏d
j=1 (β−αjΓ(αj))

Γ(
∑d
j=1 αj + 1)Cd

sup
s∈(−∞,∞)

emaxj=1,...,d sj+(β−1)
∑d
j=1 e

sj

=

∏d
j=1 (β−αjΓ(αj))

Γ(
∑d
j=1 αj + 1)Cde(1− β)

,

since the maximum is attained at (0, . . . , 0,− log(1−β), 0, . . . , 0). To minimize

K we can choose β = (
∑d
j=1 αj)/(

∑d
j=1 αj + 1). Simulation is very efficient:

usually, K ≈ 2.

5.5 Point process representations

A related construction of MGP distributions comes from Poisson point process
representations. These representations will allow us to derive expressions for
the GEV G, and thus for H or H∗. In the following, we let (Ui)i≥1 denote the
points of a Poisson process on (0,∞) with unit intensity.

Point process I Let S be any random vector such that 0 < E[expSj ] < ∞
for j = 1, . . . , d. Let (Si)i≥1 be iid copies of S. Consider the Poisson process
NS =

∑
i≥1 δZi where

Zi =

η
(exp(Si)/Ui)

ξ − 1

ξ
= if ξ 6= 0,η > 0,

Si − logUi if ξ = 0,η = 1.

(5.5.1)
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It is well-known (de Haan, 1984; Schlather, 2002) that maxi≥1Zi is max-stable
(cf. expression (1.4.2)) so that on sets of the form A = [−∞,∞] \ [−∞,x],

G(x) = P[max
i≥1

Zi ≤ x] = P[N(A) = 0] = exp {−ν(A)} .

The intensity measure of this Poisson process is then

ν (A) = E [N(A)] =

∫ ∞
0

P
[
η

(exp(S)/u)ξ − 1

ξ
� x

]
du (5.5.2)

=

∫ ∞
0

P

[
max

j=1,...,d
eS
(

1 +
ξjxj
ηj

)−1/ξj

≥ u

]
du

= E

[
max

j=1,...,d
eS
(

1 +
ξjxj
ηj

)−1/ξj
]
.

We can identify the marginal parameters σ and µ of G by comparing

Gj(xj) = exp

{
−E

[
eSj
](ξjxj

ηj
+ 1

)−1/ξj
}
,

with (5.2.2); we find

µj = (ηj/ξj)
(
E[expSj ]

ξj − 1
)
, σj = ηjE[expSj ]

ξj , j ∈ {1, . . . , d}.

Then combining the expression for ν(A) with the expressions for the marginals
G1, . . . , Gd and recalling (1.3.10), we can express the stable tail dependence
function as

`(x) = E
[

max
j=1,...,d

xj
expSj
E[expSj ]

]
, x ∈ [0,∞)d. (5.5.3)

Another expression for the intensity measure, and thus for G, is obtained from
(5.5.2) as

G(x) = exp

{
−
∫ ∞

0

1− FS
(
log(t) + ξ−1 log (1 + ξx/η)

)
dt

}
.

For ξ = 0 and η = 1 we find that maxi≥1Zi follows a multivariate GEV
distribution with σ = 1 and µ = logE[expS] and we get the simple expression

G(x) = exp

{
−
∫ ∞

0

1− FS (log t+ x) dt

}
.

Plugging this into (5.2.3) leads to the corresponding standardized MGP dist-
ribution function

H∗(z) =

∫∞
0
FS(z + log t)− FS(min(z, 0) + log t) dt∫∞

0
1− FS(log t1) dt

. (5.5.4)
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Differentiating under the integral sign leads to the density

h∗(z) =
1(max1≤j≤d zj > 0)

E[exp max1≤j≤d Sj)]

∫ ∞
0

fS(z + log t) dt,

where we recognize (5.3.5). For a formal proof, see Rootzén et al. (2016).

Point process II. Let S0 be such that P[max1≤j≤d S0 = 0] = 1. Consider
the Poisson process NS0

=
∑
i≥1 δZi where Zi are as in (5.5.1) with S replaced

by S0 = S̃ −max1≤j≤d S̃j for some vector S̃ ∈ Rd. In (5.5.4) the denominator
disappears because P[S0 � log t1] = 0 for t ≥ 1, so that

H∗(z) =

∫ ∞
0

FS0(z + log t)− FS0(min(z, 0) + log t) dt

=

∫ ∞
0

∫
s

1

(
min(z,0) + log t ≤ s− max

1≤j≤d
sj ≤ z + log(t)

)
fS̃(s) dsdt

=

∫ ∞
0

∫ z

min(z,0)

v−1fS̃(y + log v)e−max1≤j≤d yj dy dv,

where for the last step we have set v = temax1≤j≤d sj and s = y + log v. The
density is then

h∗(z) =
1(max1≤j≤d zj > 0)

e−max1≤j≤d sj

∫ ∞
0

t−1fS̃(z + log t) dt,

which corresponds to (5.3.4).

Point process III. Let R be a random vector such that, for all j = 1, . . . , d,

E
[
|Rj |1/ξj

]
<∞ if ξj 6= 0,

E [expRj ] <∞ if ξj = 0.

Let (Ri)i≥1 be iid copies of R, and define

NR =
∑
i≥1

δZi =


∑
i≥1

δRi/Uξ
i

if ξ 6= 0,

∑
i≥1

δRi−logUi if ξ = 0.

Note that for ξ = 0, this is equivalent to (5.5.1) above. Then the intensity
measure of this Poisson process is, for A = [−∞,∞] \ [−∞,x],

ν (A) =


∫ ∞

0

P
[
Ri

uξ
� x

]
du =

∫ ∞
0

1− FR(uξ) du if ξ 6= 0,∫ ∞
0

1− FR (log t+ x) dt if ξ = 0,
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and the corresponding GEV distribution G is

G(x) =


exp

{
−
∫ ∞

0

1− FR(tξx) dt

}
if ξ 6= 0,

exp

{
−
∫ ∞

0

1− FR(log t+ x) dt

}
if ξ = 0.

Recall that for ξ 6= 0, the lower limits of the univariate GEV distributions
G1, . . . , Gd are lj = −ηj/ξj . Here we consider the conditional distribution of
X − η/ξ |X � η/ξ, so setting HR(x) = H(x+ η/ξ) in (5.2.3) we get,

HR (z) =

∫∞
0
FR

(
tξ
(
z + η

ξ

))
− FR

(
tξ
(

min(z,0) + η
ξ

))
dt∫∞

0
1− FR

(
tξ ηξ

)
dt

. (5.5.5)

Finally, differentiating under the integral sign leads to the density

h(z) = 1

(
max

1≤j≤d
zj > 0

) ∫∞
0
t
∑d
j=1 ξjfR

(
tξ
(
z + η

ξ

))
dt∫∞

0
1− FR

(
tξ ηξ

)
dt

,

for ξ 6= 0, where we recognize (5.3.7). If ξ = 0 we get expression (5.5.4).

Remark 5.5.1. We chose to standardize to ξ = 0 because of the simplicity
of the formulas, but standardization to ξ = 1 (or ξ = −1) is possible as well:
starting from the point process (5.5.1) with Wi = exp(Si), we get the MGP
distribution function

H0(z) =

∫∞
0

(
FW (r(1 + ξz/η)1/ξ)− FW (r(1 + ξmin(z,0)/η)1/ξ

)
dr∫∞

0
1− FW (r1) dr

.

Then letting X ∼ H0 with η = ξ = 1 and setting Z = X + 1, we get a
standardized MGP distribution function

H∗0 (z) =

∫∞
0
FW (rz)− FW (rmin(z,1)) dr∫∞

0
1− FW (r1) dr

.

5.6 Applications

5.6.1 Censored likelihood inference

We will use the density (5.3.6) as a contribution to the likelihood only when
all components of the observed vector X are “large”, in the sense of exceeding
the threshold u. The reasoning for this is twofold.

1. For ξj > 0, the lower endpoint of a MGP distribution is −ηj/ξj . Using a
censored likelihood means that for small values of a component, we only
need to assume they are between −ηj/ξj and uj .
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2. It has become well established that without censoring, bias is induced in
the estimation of dependence parameters; see, for instance, Huser et al.
(2015).

Let D := {1, . . . , d} and C ⊂ D be the subset of indices denoting which com-
ponents of X fall below the corresponding component of u, i.e., Xj ≤ uj for
j ∈ C, and Xj > uj for j ∈ D \ C, with at least one j such that Xj > 0.
Set xC := {xj : j ∈ C}. For each realization of X, we use the likelihood
contribution

hC(xD\C ,uC) =

∫
∏
j∈C(−∞,uj ]

h(x) dxC , (5.6.1)

which is equal to (5.3.6) if C is empty. Appendix 5.A contains forms of censored
likelihood contributions for the models included in Section 5.4. Thus, for n
independent repeated observations of X, x1, . . .xn, the form of the censored
likelihood function to be maximized is

L(θ) =

n∏
i=1

hCi(xi;θ),

where Ci denotes the censoring subset for xi, which may be empty, and θ is
the parameter vector containing ξ, η and the dependence parameters stemming
from the construction vector S̃, S or R.

Working within a likelihood-based framework for inference offers clear bene-
fits: for instance, comparison of nested models is straightforward by likelihood
ratio tests. This is important as the number of parameters can quickly grow
large if margins and dependence are fitted simultaneously. Moreover, incor-
porating covariate effects, such as a linear trend in one of the parameters, is
straightforward. Such ideas were introduced in the univariate framework by
Davison and Smith (1990), but nonstationarity in the dependence structure
has received comparatively little attention; an exception is Huser and Genton
(2016).

5.6.2 Case study: landslides

Rainfall might cause water pressure to build up into the ground and is therefore
a trigger of landslides. Landslides may be caused either by extreme rainfall
on a certain day, or by moderate rainfall amounts on consecutive days. It
is possible to establish a threshold relation between the intensity (I) of the
rainfall, i.e., the amount of precipitation accumulated in a period, and the
duration (D) of the rainfall. Guzzetti et al. (2007) consolidate many previous
studies on landslides, obtaining 853 landslide events between 1841 and 2002.
They find that the majority of rainfall events that cause landslides have a
duration between one hour and three days (Guzzetti et al., 2007, Figure 6A),
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and propose the following threshold relation for highland climates in Europe:

I = 7.56×D−0.48, (5.6.2)

where the intensity is in mm/hour and the duration is expressed in hours. The
amount of rainfall necessary to cause a landslide during a 3-day period is then
69.9 mm, during a 2-day period 56.59 mm and during a 1-day period 39.47.

The total cost of landslides in Sweden is typically around SEK 200 mil-
lion/year. In Abisko (northern Sweden), there have been several landslides
in the past century, for instance in October 1959, August 1998, and in July
2004 (Rapp and Strömquist, 1976; Jonasson and Nyberg, 1999; Beylich and
Sandberg, 2005). We have daily accumulated precipitation data (in mm) from
Abisko between January 1st 1913 to December 31st 2014, leading to a sample
size of 37 255. The previously mentioned landslides are visible in our data, with
24.5 mm rain on the 5th of October 1959, 21.0 mm rain on the 24th of August
1998 and 61.9 mm rain on the 21st of July 2004, which is the largest value of
our entire dataset. Figure 5.1 shows the daily precipitation amounts P1, . . . , Pn
(left) and a mean residual life plot of P1, . . . , Pn (right). Based on the mean
residual life plot, we choose the threshold u = 12, which corresponds roughly
to the 99% quantile, leading to 335 threshold exceedances. The parameter
stability plot in Figure 5.2 confirms the choice of this threshold.
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Figure 5.1: Daily precipitation P1, . . . , Pn in Abisko (left) and the mean residual
life plot with the threshold u = 12 (right).

We wish to construct a dataset X1, . . . ,XN ∈ R3, whose components rep-
resent daily, two-day, and three-day extreme rainfall amounts respectively. We
limit ourselves to d = 3 because of the findings in Guzzetti et al. (2007). Let
P(1) denote the first value of P1, . . . , Pn which exceeds the threshold u, or the
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Figure 5.2: Parameter stability plots for the daily precipitation amounts
P1, . . . , Pn.

maximum of two consecutive non-zero datapoints whose sum is larger than u,
or the maximum of three consecutive non-zero datapoints whose sum is larger
than u. Let the first cluster consist of P(1) plus the five values preceding it
and the five values following it. Then let X11 be the largest value in the first
cluster, X12 the largest sum of two consecutive non-zero values in the first
cluster, and X13 the largest sum of three consecutive non-zero values in the
first cluster. Find the second cluster and compute X2 = (X21, X22, X23) in
the same way, starting with the first value after the first cluster. If the second
cluster overlaps with the first one, then we let the second cluster only consist
of the values which are not already in the first cluster. Continuing this way,
we obtain a dataset X1, . . . ,XN , with N = 580. Recall that Xi − u | Xi � u
can be approximated by an MGPD X on {x ∈ Rd : x � 0}, whose margins,
conditionally on being positive, are univariate GP distributions; see (5.2.4).

Time trend
A similar dataset has previously been analysed in Rudvik (2012), where a

univariate GEV model with a linear trend in the location parameter was fitted
to annual maxima, concluding there is no significant trend. We investigate
the question whether there is a linear trend in the daily, two-day or three-day
rainfall amounts by fitting a univariate GP distribution with log η(t) = a2 +b2t
for t ∈ (0, 1] to the marginal distributions of (Xi)i=1,...,N , where the time t
corresponds to the time of the threshold exceedances. To this end, we need to
select marginal threshold above which we fit the univariate GP distributions.
For the first component, we take u = 12 as found previously; for the second
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and third component, we take u = 13.5 and u = 14 respectively, based on
inspection of parameter stability plots.

In Table 5.1, we report the parameter estimates for the univariate GP fit
above these thresholds. The last line shows the deviance, i.e., −2 times the
difference in log-likelihood with respect to a model with η(t) ≡ η. We compare
to the 95% quantile of a χ2

1 distribution, given by 3.84. Likelihood ratio tests
show that a linear trend in the logarithm of the scale parameter is rejected for
all margins.

We do not adopt any trend and Table 5.2 shows the result of fitting uni-
variate GP distributions to the margins conditional on exceeding the previously
mentioned thresholds. Observing that the estimated shape parameters are all
around zero, we would like to test if the simpler model ξ1 = ξ2 = ξ3 = 0 would
suffice and we find that likelihood ratio tests can not be rejected. The assump-
tion of an equal η for all margins can not be rejected either (for η = 8.6),
providing some evidence for an even simpler model where η1 = η2 = η3. In the
following analysis, we will set η = η1 and ξ = ξ1, and we will fit both a model
with the restriction ξ = 0 and one without.

Xi1 Xi2 Xi3

ξ̂ -0.09 (0.06) -0.05 (0.06) -0.03 (0.06)
â2 2.01 (0.12) 2.13 (0.11) 2.20 (0.11)

b̂2 0.31 (0.27) 0.32 (0.25) 0.27 (0.22)
deviance 1.27 1.62 1.52

Table 5.1: Estimates of the parameters of a GP model with rate log η = a2 +b2t
and shape ξ for thresholds u = 12, u = 13.5 and u = 14 respectively; standard
errors in parentheses.

Xi1 Xi2 Xi3

ξ̂ -0.06 (0.05) -0.02 (0.06) -0.01 (0.05)
η̂ 8.26 (0.69) 9.34 (0.74) 9.96 (0.74)

Table 5.2: Estimates of the parameters of a GP model with rate η and shape
ξ for thresholds u = 12, u = 13.5 and u = 14 respectively; standard errors in
parentheses.

Dependence structure
We fit the MGP density corresponding to the structured components model

from Section 5.4.2 to the data (Xi)i=1,...,N . Note that the components of our
data are strictly increasing, so that the model from Section 5.4.2 is applicable.
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We consider a model with the restriction ξ = 0 and a more general model
with ξ ∈ R. Recall that we need to impose a restriction on the parameters for
identifiability; we set λ1 = 7.79 for ξ = 0, obtained by fitting an exponential
distribution to the first margin, and λ1 = 8.26 for ξ ∈ R (see Table 5.2). We
estimate the parameters (λ2, λ3, η) in the first case and (λ2, λ3, η, ξ) in the
second case. We choose u = 24 and we continue with the 142 datapoints whose
third component exceeds u = 24. Table 5.3 shows the parameter estimates
obtained using censored likelihood. Again, the hypothesis of ξ = 0 can not be
rejected. We see that the estimates of η are somewhat higher than we saw in
the marginal analysis.

u = 24 λ̂1 λ̂2 λ̂3 η̂ ξ̂ nllh

restricted 7.78 6.57 8.40 10.17 − 870.0
− (0.99) (1.43) (0.80) −

unrestricted 8.26 6.84 8.79 9.14 0.11 868.9
− (1.02) (1.50) (0.99) (0.08)

Table 5.3: Parameters for the ordered components model with u = 24; standard
errors in parentheses.

Let X = (X1, X2, X3) denote a MGP vector whose density is the one of
the three-dimensional structured components model. We wish to estimate the
probability of a future landslide using formula (5.6.2), i.e., we wish to calculate
P[X � x] where x = (39.5, 56.6, 69.9), and x > u. We can write

P[X � x] = P[X − u � x− u |X � u]P[X � u]

=
(

1−H(x− u)
)
P[X3 > u]. (5.6.3)

The first term of (5.6.3) can be written as

1−H(x− u) = `
(

1−H1(x1 − u), . . . , 1−Hd(xd − u)
)
,

and 1−Hj(xj − u) can be approximated using (5.2.4) for j ∈ {1, 2, 3}. Recall
that the rainfall data we used to obtain the estimates in Table 5.3 comprises
102 years. If nj,u denotes the number of observed exceedances of compon-
ent j over the threshold u, then the number of yearly exceedances follows a
Poisson distribution with parameter nj,u/102 and the probability of at least
one exceedance in a given year is 1− exp(nj,u/102), which we use to estimate

P[Xj > u]. Plugging in the parameter estimates (λ̂1, λ̂2, λ̂3, η̂) from the top
row of Table 5.3 gives

P[X1 > 39.5 or X2 > 56.6 or X3 > 69.9] ≈ 0.0563. (5.6.4)

We find that the probability of a landslide in any given year is 0.0563, which
is very similar to the result in Rudvik (2012).
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Goodness-of-fit For a visual test we consider QQ-plots for each of the uni-
variate GP distributions given by (Xij − u) | Xij > u, where u = 24 as before.
Figure 5.3 shows the QQ-plots for the restricted model with ξ = 0 (upper pan-
els) and for the unrestricted model (lower panels). Both fits are less good for
the first component, due to the restriction η = η1.

Let χ12, χ13 and χ23 denote the pairwise tail dependence coefficients and
χ123 the full tail dependence coefficient; see (1.3.6). We would like to com-
pare empirical estimates of the tail dependence coefficient with model-based
ones. The pairwise empirical estimates are given by expression (1.3.7); the full
empirical estimate is computed in a similar way.
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Figure 5.3: QQ-plots for the univariate GP distributions with parameters im-
plied by Table 5.3, for the restricted model (upper panels) and the unrestricted
model (lower panels).

Figure 5.4 shows the results, where the horizontal lines represent the model-
based pairwise tail dependence coefficients for u = 24, i.e., we plugged in λ̂1,
λ̂2 and λ̂3 from the top row in Table 5.3 in

χ12 = 1− λ1

2(λ1 + λ2)
,

χ13 = 1− λ1(λ2 + λ3)3

(λ3 + 2λ2)(λ2 + 2λ3)(λ2λ3 + λ1λ3 + λ1λ2)
,
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Figure 5.4: Pairwise and full empirical tail dependence coefficients for a range
of thresholds. The horizontal lines are the model-based tail dependence coeffi-
cients for u = 24, with parameters implied by Table 5.3 for ξ = 0.

χ23 = 1− λ1λ2(λ1 + λ2)2

(λ1 + 2λ2)(λ2 + 2λ1)(λ2λ3 + λ1λ3 + λ1λ2)
,

χ123 = 1− λ1

2(λ1 + λ2)
− λ1λ2(4λ1λ2 + λ1λ3 + 3λ2

2 + λ2λ3)

3(2λ1 + λ2)(2λ2 + λ3)(λ1λ2 + λ1λ3 + λ2λ3)
.

Some properties of the structured components model can be inferred from the
simple expression for χ12; when λ1 = λ2, then χ12 = 0.75 regardless of the
value of λ1. If λ1 � λ2, then χ12 → 0.5; if λ2 � λ1, then χ12 → 1. It is
natural that the model cannot approach asymptotic independence, since it is
based on cumulative sums.

Finally, we apply the goodness-of-fit test presented in Corollary 3.2.5. To
this end, we need to define a list of points c1, . . . , cq ∈ [0,∞)3 for q > 2.
We let cm ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} for m ∈ {1, 2, 3, 4}. The test
statistic from Corollary 3.2.5 then converges to a chi-square distribution with
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q− p = 2 degrees of freedom; its 95% quantile is equal to 5.99. Computing the
test statistic for k ∈ {50, 75, 100, 125, 150}, where we set again λ1 = 7.79, we
find the values 1.08, 4.48, 1.17, 5.42, and 0.99 respectively, so that we can not
reject the structured components model for any value of k.

Using the parameter estimates obtained when calculating the test statistic
for the goodness-of-fit test for k = 142 we obtain a yearly landslide probability
of

P[X1 > 39.5 or X2 > 56.6 or X3 > 69.9] ≈ 0.0564,

which is practically equal the result in (5.6.4).

Discussion
We fitted a three-dimensional structured components model to cumulative

precipitation data. The fit of the marginals of this model could be further
improved by removing the restriction η = η1. Unfortunately, it is not obvious
how to do so: although Table 5.2 suggests that η1 < η2 < η3, we can not fit such
a model since it will destroy the ordering of the data components. However,
we saw that even a model with the restrictions η = η1 and ξ = 0 provides an
adequate fit in terms of the dependence structure.

5.A Censored likelihoods

We describe the expressions needed to perform censored likelihood estimation
for the models detailed in Section 5.4. For simplicity they are presented in
standardized (η = 1, ξ = 0) form, i.e.,

h∗C(zD\C , ṽC) =

∫
∏
j∈C(−∞,ṽj ]

h∗(z) dzC , (5.A.1)

for v ≤ 0. The generalized form of a censored likelihood is then easily obtained
from (5.A.1) as

hC(xD\C , ṽC) =
∏
j∈C

1

(ηj + ξjxj)
h∗
(

log(1 + ξxD\C/η)

ξ
,

log(1 + ξṽC/η)

ξ

)
.

The support for each density presented here is {z ∈ Rd : z 6≤ 0}.

Gumbel model For S̃, we obtain

h∗C(zD\C , ṽC) =∫ ∞
0

rd−|C|−1
∏
j∈C

e−(reṽj−λj )−αj
∏

j∈D\C

αj
eλj

(
rezj

eλj

)−αj−1
ezj

e(rezj−λj )−αj
dr.
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If all αj are equal to α:

h∗C(zD\C , ṽC) =
αd−|C|−1e−maxj zjΓ(d− |C|)

∏
j∈D\C e

−α(zj−λj)(∑
j∈C(eṽj−λj )−α +

∑
j∈D\C(ezj−λj )−α

)d−|C| .
For S, we obtain

h∗C(zD\C , ṽC) =∫ ∞
0

rd−|C|
∏
j∈C

e−(reṽj−λj )−αj
∏

j∈D\C

αj
eλj

(
rezj

eλj

)−αj−1
ezj

e(rezj−λj )−αj
dr.

If all αj are equal to α:

h∗C(zD\C , ṽC) =
αd−|C|−1Γ(d− |C| − 1/α)

∏
j∈D\C e

−α(zj−λj)(∑
j∈C(eṽj−λj )−α +

∑
j∈D\C(ezj−λj )−α

)d−|C|−1/α
.

Log-gamma model Let Fj , j ∈ C, denote the cumulative distribution func-

tion of a Gamma(αj , 1) random variable. For S̃,

h∗C(zD\C , ṽC) = e−max1≤j≤d zj
∏

j∈D\C

eαjzj

Γ(αj)

×
∏

j∈D\C

∫ ∞
0

r−1

 ∏
j∈D\C

rαje−re
zj

∏
j∈C

Fj(re
ṽj )

 dr.

If Cd is as defined in (5.4.3), then for S,

hC(zD\C , ṽC) =
C−1
d

Γ
(∑d

j=1 αj + 1
) ∏
j∈D\C

eαjzj

×
∏
j∈C

Γ(αj)

∫ ∞
0

 ∏
j∈D\C

rαje−re
zj

∏
j∈C

Fj(re
ṽj )

 dr.

Structured components model Recall that since this is a model on R, we
need to differentiate between ξ = 0 and ξ > 0.

Case ξ = 0. The censored likelihood has an analytical expression but is tedi-
ous to write down. We show the result for ṽ = ṽ1. Note that, since the
density h(z; 0, 1) is non-zero only for z1 < · · · < zd, we censor in |C| = k
components if

z1 < · · · < zk < ṽ < zk+1 < · · · < zd.
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We show the result for k = 1; expressions for k > 1 follow naturally by
repeated integration of this result. Then for 1(ṽ < z2 < · · · < xd) and
1(zd > 0),

hC(z2, . . . , zd, ṽ) =
d!
∏d
j=1 λj∑d

j=1 λ
−1
j

∫ ṽ

−∞

∏d
j=1 e

zj(∑d
j=1(λj − λj+1)ezj

)d+1
dzk

=
(d− 1)!λ1

∏d
j=2 λje

zj

(λ1 − λ2)
∑d
j=1 λ

−1
j

{( d∑
j=2

(λj − λj+1)ezj
)−d

−
( d∑
j=2

(λj − λj+1)ezj + (λ1 − λ2)eṽ
)−d}

Case ξ > 0. Similar to the above.





Chapter 6

Max-factor individual risk
models with application to credit
portfolios

Abstract

Individual risk models need to capture possible correlations as failing
to do so typically results in an underestimation of extreme quantiles of
the aggregate loss. Such dependence modelling is particularly important
for managing credit risk, for instance, where joint defaults are a major
cause of concern. Often, the dependence between the individual loss
occurrence indicators is driven by a small number of unobservable factors.
Conditional loss probabilities are then expressed as monotone functions
of linear combinations of these hidden factors. However, combining the
factors in a linear way allows for some compensation between them. Such
diversification effects are not always desirable and this is why we propose
a new model replacing linear combinations with maxima. These max-
factor models give more insight into which of the factors is dominant.
This chapter is based on Denuit, Kiriliouk and Segers (2015).

6.1 Introduction and motivation

Individual risks are often exposed to the same environment and this induces
some dependence that leads to bias in calculations of stop-loss premiums and
other risk measures. There are many situations in practice where dependence
affects occurrences of losses. Typical cases arise for policies covering natural
disasters (hurricane, tornado, flood, etc.). We refer the reader to the book of
Denuit et al. (2005) for an introduction to the modelling of dependence and to
the review paper of Anastasiadis and Chukova (2012) for an overview of the
various multivariate insurance models suggested in the literature.
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In this chapter, we model the occurrence of losses at the individual level.
Recall that portfolios of risks are generally described by means of either a
bottom-up approach or a top-down approach. In insurance, these two ap-
proaches are referred to as the individual and the collective models of risk
theory. The bottom-up approach is also known as a name-per-name approach
in the credit risk literature. It starts from a description of the individual risks
from which the distribution of the aggregate loss is derived. The bottom-up
approach has some clear advantages over the top-down approach, such as the
possibility to easily account for heterogeneity.

In credit risk models, default indicators can in general not be considered
as being mutually independent. Dependence between the defaults of different
firms can be caused by direct links between them (e.g., one firm is the other’s
largest customer) or by more indirect links. In the latter category, we find
industrial firms using the same resources, and thus exposed to the same price
shocks, or selling on the same markets, and thus tributary of the same demand
and subject to the same regulation.

A number of macroeconomic factors may influence many default indicators
at once; examples include business cycles, level of unemployment, or shifts in
monetary policy. To account for these situations, vectors of default indicators
are often modelled via common mixture models. The idea is that there ex-
ists a limited number of systematic factors such that the default indicators are
conditionally independent when the factors are controlled. Unconditionally,
however, the default indicators are dependent because they are subject to the
same unobservable macroeconomic factors. These factor models are among the
few models that can replicate a realistic correlated default behavior while dra-
matically reducing the numerical complexity when computing the distribution
of the aggregate portfolio loss.

In general, conditional default probabilities are functions of linear combina-
tions of the hidden factors, with weights reflecting the relative sensitivity to the
risk factor. This is the case for the majority of industry models, including the
CreditRisk+ and KMV models. We refer the reader to Bluhm et al. (2002) for
a general introduction. The hidden factors are typically associated to different
levels of the economy in a hierarchical way, accounting for global effects and
sector-specific ones. Replacing linear combinations of hidden factors with max-
ima is attractive in some applications. The max-decomposition better accounts
for shocks specific to a given category of risks, whereas linear combinations of
factors tend to dilute the shock within the contributions of each factor to the
sum.

The remainder of this chapter is organized as follows. In Section 6.2, we
describe the proposed max-factor specification to induce dependence between
loss indicators. Section 6.3 is devoted to calibration techniques. First, we de-
scribe the general set-up and introduce some parametric factor models. Second,
we propose efficient numerical procedures to obtain the maximum likelihood
estimates for max-factor models. In Section 6.4, new nonparametric estimators
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are proposed that can be used as a benchmark to evaluate the goodness-of-fit
of parametric risk models. A simulation study assessing the performances of
the estimators is given in Appendix B, whereas formal proofs of the results pro-
posed in Sections 6.3 and 6.4 can be found in Appendix A. In Section 6.5, we
work out a detailed numerical illustration performed on a classical credit risk
data set provided in Standard and Poor’s (2001). Finally, Section 6.6 briefly
discusses the results obtained in this chapter and concludes.

6.2 Max-factor risk model

Consider a portfolio of m risks split into k categories observed over a given
reference period. Each category, r, contains mr individual risks, r = 1, . . . , k.
The indicator Yr,i is equal to 1 if risk i from category r brings some financial
loss and to 0 otherwise. The random variables Yr,i may be associated to a
borrower’s default in credit risk, to a policyholder’s death in life insurance, or
to the occurrence of a claim in general insurance, for instance. Henceforth, we
refer to Yr,i as the loss (occurrence) indicator.

As individual contracts are subject to a common environment, loss indicat-
ors are impacted by a number of identical risk factors. The max-factor decom-
position accounts for this positive correlation by means of a global risk factor
Ψ0 affecting all the m contracts and category-specific factors Ψ1, . . . ,Ψk whose
influence is restricted to the contracts in the same class. The random variables
Ψ0,Ψ1, . . . ,Ψk are assumed to be independent with common distribution func-
tion FΨ. All the contracts in the same risk class r share the common random
effect Ψr but are also subject to a competing global effect Ψ0 affecting the
entire block of business. In homeowners insurance, this global effect may be
related to storms or earthquakes. In life insurance, it typically accounts for the
sudden increase in death probabilities due to the occurrence of pandemics.

Write Ψ = (Ψ0,Ψ1, . . . ,Ψk). Whereas the majority of factor models are
based on linear combinations of the hidden risk factors, here we specify a
latent-shock or competing-risk mechanism. Specifically, the conditional loss
probability P[Yr,i = 1 | Ψ] is expressed as an increasing function of the latent
factor

max{νr + σrΨr, µr + σrΨ0}, (6.2.1)

where the class-specific parameters satisfy νr, µr ∈ R and σr ≥ 0. Then, the
effect in (6.2.1) is mapped to the unit interval with the help of the distribution
function FΨ, i.e.,

P[Yr,i = 1 | Ψ] = FΨ

(
max{νr + σrΨr, µr + σrΨ0}

)
. (6.2.2)

There is thus a competition between the class-specific effect, νr + σrΨr, and
the global effect, µr + σrΨ0. Only the larger of the two has an impact on the
occurrences of losses. The parameters νr and µr represent the sensitivity of the
conditional loss probability to the class-specific factor Ψr and to the global risk
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factor Ψ0, respectively: the smaller µr, the less sensitive the loss indicators in
category r to Ψ0.

Natural candidates for FΨ are to be found among the max-stable distribu-
tions. Max-stability ensures that the distribution of the maximum in (6.2.1)
stays in the same family. In this paper, we consider the Gumbel distribution,
but a similar analysis can be carried out with any other max-stable family
of distributions. Recall that the (standardized) distribution function of the
Gumbel distribution is

FΨ(x) = exp
(
− exp(−x)

)
, x ∈ R.

The choice of the Gumbel distribution explains why we have chosen the latent
shock to be of the form (6.2.1): the maximum in (6.2.1) is again a Gumbel
distributed random variable, due to the fact that the multiplicative coefficient
σr is equal for every element of Ψ. The smaller the constants νr and µr, the
less sensitive the contract is to the corresponding factor.

The model we propose is related to similar constructions suggested in the lit-
erature, but applied to different levels. For instance, in Denuit et al. (2002, Ex-
ample 2.7) it is suggested, following Cossette et al. (2002), to represent the loss
indicator Yr,i in terms of independent Bernoulli random variables J0, J1, . . . , Jk
as

Yr,i = min(Jr + J0, 1) = max(J0, Jr), i = 1, . . . , n;

see also Valdez (2014). In credit risk modelling, time-to-defaults are sometimes
assumed to be subject to a competing-risk mechanism (Giesecke, 2003). Default
indicators are then of the form

Yr,i = 1
{

min(Er, E0) ≤ 1
}

= max
(
1{Er ≤ 1},1{E0 ≤ 1}

)
,

where E0, E1, . . . , Ek are independent, positive random variables. The factor
E0 impacting all obligors accounts for a systematic shock threatening the
solvency of the entire portfolio. In the model we propose, the max-factor de-
composition affects the conditional loss probability and not the loss indicators
directly. Contrarily to the two models described above, where the occurrence of
the common shock (J0 in the first case, or {E0 ≤ 1} in the second case) leads to
the simultaneous occurrence of losses, the factors Ψ0, . . . ,Ψk only impact the
conditional loss probabilities in (6.2.2). As long as this conditional probability
stays below unity, there is still room for distinct individual default experiences.
In this sense, the max-factor model appears to be more flexible.

The max-factor model can also be seen as a regime-switching construc-
tion, where the maximum drives the switch from standard to severe condi-
tions. Think for instance of life insurance. The indicator Yr,i is now equal to
1 if individual i from risk class r dies during the year. Modern actuarial cal-
culations recognize the uncertainty surrounding one-year death probabilities.
The max-factor model can account for the occurrence of pandemics increasing
the mortality of the population: Ψ0 is related to the severity of the pandemics
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and the parameters µr and σr modulate its consequences for the different risk
categories (typically, flu pandemics can have different consequences depending
on age category). There is thus a switch in the mortality regime, from standard
to high.

Compared to the classical linear specification, the maximum in (6.2.1) pro-
hibits any compensation between the global factor, Ψ0, and the category-
specific factors, Ψ1, . . . ,Ψk. Indeed, the linear combination µr + τrΨr + σrΨ0,
where µr ∈ R, τr ≥ 0, σr ≥ 0, allows for diversification between Ψ0 and Ψr:
a large realization for Ψ0 can be compensated by a small realization for Ψr,
leaving the corresponding linear combination unchanged. Assume for instance
that the global economy is booming, so that Ψ0 is small (default probabilities
being increasing in the linear combination of risk factors). However, firms in
some category r may experience severe problems because of new regulations,
embargo, emerging new technologies, etc., so that Ψr may be large. The lin-
ear combination somewhat compensates the difficulties specific to category r
with the excellent global conditions. In contrast, the max-factor specification
(6.2.1) focuses on the worst factor, which is Ψr in our example, and recognizes
the particular problems faced by the firms in category r. Another possible
interpretation of the max-factor specification is that it measures the degree of
“tolerance” an individual risk has in the presence of a common global shock.
Depending on the kind of application, linear or max-factor decompositions may
be considered to represent the correlation structure of the individual loss in-
dicators.

6.3 Calibration of max-factor models

6.3.1 General setup

Assume that a portfolio of risks has been observed for n calendar years. Define
the indicator variables Yr,j,i, r ∈ {1, . . . , k}, j ∈ {1, . . . , n}, i ∈ {1, . . . ,mr,j},
where Yr,j,i = 1 corresponds to the occurrence of losses for individual i in
category r during calendar year j, while mr,j denotes the number of risks in
category r and calendar year j. In the credit risk data that we will study in
Section 6.5, the categories will correspond to the rating classes.

For fixed r and j, the number of risks producing losses isMr,j =
∑mr,j
i=1 Yr,j,i.

We assume that, within a category r, individual risks are exchangeable. More
specifically, let Qj = (Q1,j , . . . , Qk,j) be the conditional loss probabilities for
calendar year j. Assume that Q1, . . . ,Qn are independent and identically dis-
tributed. Given Qj , the random variables Yr,j,i are independent Bernoulli ran-
dom variables with respective means Qr,j , so that the conditional distribution
of Mr,j is given by

P[Mr,j = l | Qj ] =

(
mr,j

l

)
Qlr,j (1−Qr,j)mr,j−l , l ∈ {0, . . . ,mr,j}.



138 Chapter 6. Max-factor individual risk models

Conditionally on Qj , the numbers M1,j , . . . ,Mk,j of risks producing losses are
independent and binomially distributed.

6.3.2 Quantities of interest

We are interested in the estimation of the following quantities:

Marginal loss probabilities. The probability that risk i in category r pro-
duces a loss during year j is given by

πr = P[Yr,j,i = 1] = E[Yr,j,i] = E[Qr,j ]. (6.3.1)

Joint loss probabilities. The probability that two different risks i1 and i2 in
the same or different categories r and s produce losses during the same
year j is given by

πrs = P[Yr,j,i1 = 1, Ys,j,i2 = 1] = E[Yr,j,i1Ys,j,i2 ] = E[Qr,jQs,j ]. (6.3.2)

Intra-class higher-order loss probabilities. The probability that l ≥ 1
risks within the same category r produce losses during the same year
j is equal to

π(l)
r = P[Yr,j,1 = . . . = Yr,j,l = 1] = E[Qlr,j ].

Clearly, π
(1)
r = πr and π

(2)
r = πrr.

Inter-class higher-order joint loss probabilities. The probability that
l1 ≥ 1 risks in category r and l2 ≥ 1 risks in category s, where r 6= s,
produce losses during the same year j is given by

π(l1,l2)
rs = P[Yr,j,1 = . . . = Yr,j,l1 = 1, Ys,j,1 = . . . = Ys,j,l2 = 1]

= E[Ql1r,jQ
l2
s,j ].

Clearly, π
(1,1)
rs = πrs.

The higher-order (joint) loss probabilities are not of primary interest; they will
appear in Section 6.4 where we will define nonparametric estimators for πr and
πrs.

Dependence measures are easily expressed in terms of the probabilities
defined above. For instance, the relative risk measure, or risk ratio, used in
Valdez (2014) in motor insurance, can be written as

P[Yr,j,i1 = 1|Ys,j,i2 = 1]

P[Yr,j,i1 = 1|Ys,j,i2 = 0]
=

πrs(1− πs)
(πr − πrs)πs

.

Borrowed from medical studies, this quantity measures the tendency of one risk
to induce another risk to produce losses. As pointed out in Valdez (2014), the
linear correlation coefficient is less suitable as a measure of association between
binary random variables. For more details, see e.g. Denuit and Lambert (2005).



6.3. Calibration of max-factor models 139

6.3.3 Factor models

We assume a parametric model for the conditional default probabilities Qj

by setting Qr,j = Qr(Ψj ;θ), where Ψj = (Ψ1,j , . . . ,Ψp,j) with p < mr,j for
j ∈ {1, . . . , n} are independent and identically distributed latent factors with
some known distribution, θ is the parameter vector, and Qr( · ;θ) are functions
from Rp to [0, 1]. To simplify the notation, we will usually omit the dependence
on θ.

Formally, for fixed r and j, given p-dimensional vectors Ψj with p < mr,j ,
Yr,j follows a Bernoulli mixture model with factor vector Ψj if there exist
functions Qr : Rp → [0, 1], r ∈ {1, . . . , k}, such that given Ψj = ψj , Yr,j is a
vector of independent Bernoulli variables with P[Yr,j,i = 1 | Ψj = ψj ] = Qr(ψj)
for i ∈ {1, . . . ,mr,j}, where ψj = (ψj,1, . . . , ψj,p). Dependence between loss
indicators is essentially dependence of conditional loss probabilities on a set of
factors.

As described in Section 6.2, our focus is on a Gumbel max-factor model.
For comparison, we consider factor models based on the normal distribution
and a Gumbel one-factor model as well.

Model (1a) The one-factor Probit-normal specification assumes that for a
year j ∈ {1, . . . , n}

Qr (Ψj) = Φ(µr + σrΨj), σr > 0, r ∈ {1, . . . , k},

where Φ denotes the cumulative distribution function of a standard nor-
mal random variable and the factors Ψ1, . . . ,Ψk are independent with
common distribution function Φ for j ∈ {1, . . . , n}. The model paramet-
ers are θ = (µ1, . . . , µk, σ1, . . . , σk). This classical model has been applied
in Frey and McNeil (2003) to the same dataset appearing in Section 6.5.

Model (2a) A direct extension of model (1a) is

Qr (Ψj) = Φ (µr + τrΨr,j + σrΨ0,j) , σr, τr > 0, r ∈ {1, . . . , k},

where the k + 1 components Ψ0,j ,Ψ1,j , . . . ,Ψk,j of Ψj are independent
with common distribution function Φ. The model parameters are θ =
(µ1, . . . , µk, τ1, . . . , τk, σ1, . . . , σk). If τr → 0 for every r, we retrieve model
(1a).

Model (1b) The Gumbel one-factor can be defined as

Qr (Ψj) = FΨ(µr + σrΨj), σr > 0, r ∈ {1, . . . , k},

where the factors Ψ1, . . . ,Ψk are independent random variables with com-
mon distribution function FΨ(x) = exp (− exp(−x)). The vector of model
parameters is θ = (µ1, . . . , µk, σ1, . . . , σk).
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Model (2b) For the Gumbel max-factor model, we take

Qr (Ψj) = FΨ (max {νr + σrΨr,j , µr + σrΨ0,j}) , σr > 0,

where Ψ0,j ,Ψ1,j , . . . ,Ψk,j are independent and have a common distribu-
tion function FΨ. The model parameters are θ = (ν1, . . . , νk, µ1, . . . , µk,
σ1, . . . , σk). If νr → −∞ for every r, then we are back at model (1b).

Models (1a)-(1b) involve a single factor but differ in the right tails of the condi-
tional loss probabilities Qr (Ψj): the probability that these conditional probab-
ilities exceed high thresholds is typically larger under the Gumbel specification
compared to the Gaussian one. Considering models (2a)-(2b), a global ef-
fect Ψ0,j is now combined with category-specific effects Ψr,j . This gives more
flexibility as conditional loss probabilities now become dependent, sharing the
common random effect Ψ0,j . It is worth mentioning that the interpretation
of the parameters is different under models (2a) and (2b). In model (2a), the
coefficients τr and σr multiplying the random effects measure the sensitivity of
the individual risks in category r to Ψr,j and Ψ0,j , respectively, whereas these
sensitivities are measured by the additive parameters νr and µr in model (2b).

As described in Section 6.3.2, we focus on the marginal loss probabilities
πr and the joint loss probabilities πrs. If FΨ is the distribution function of a
generic risk factor Ψ, then these loss probabilities are obtained directly from
(6.3.1) and (6.3.2) by

πr = E[Qr(Ψ)] =

∫
Qr(ψ) dFΨ(ψ), (6.3.3)

πrs = E[Qr(Ψ)Qs(Ψ)] =

∫
Qr(ψ) Qs(ψ) dFΨ(ψ). (6.3.4)

6.3.4 Likelihood

Let FΨ denote again the distribution function of a generic risk factor Ψ. For
category r and year j, the unconditional distribution of the number of risks
producing losses is given by

P[Mr,j = lr,j ] =

(
mr,j

lr,j

)∫
Qr (ψj)

lr,j
(
1−Qr(ψj)

)mr,j−lr,j
dFΨ(ψj).

We write Mj = (M1,j , . . . ,Mk,j) and lj = (l1,j , . . . , lk,j) for j = 1, . . . , n.
Notice that since the loss indicators are independent given the vectors Ψj , we
can write

P[Mj = lj | Ψj = ψj ] =

k∏
r=1

(
mr,j

lr,j

)
Qr(ψj)

lr,j
(
1−Qr(ψj)

)mr,j−lr,j
. (6.3.5)
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For every year we have expression (6.3.5) and the log-likelihood takes the form

Ln(θ;M1, . . . ,Mn) =

n∑
j=1

k∑
r=1

log

(
mr,j

Mr,j

)
+

n∑
j=1

log Ij ,

where

Ij =

∫ k∏
r=1

Qr(ψj)
Mr,j

(
1−Qr(ψj)

)mr,j−Mr,j
dFΨ(ψj).

For the one-factor models (1a) and (1b), we find it convenient to make the
substitution q = FΨ(ψj) and to evaluate Ij as

Ij =

∫ 1

0

exp

( k∑
r=1

Mr,j log
{
Qr(F

−1
Ψ (q))

}
+ (mr,j −Mr,j) log

{
1−Qr(F−1

Ψ (q))
})

dq.

For models (2a) and (2b), we can make the substitutions ql = FΨ(ψj,l) for
l ∈ {0, . . . , k} since ψj = (ψj,0, . . . , ψj,k). Then, we can write the likelihood as

Ij =

∫
[0,1]k+1

(
k∏
r=1

fr,j(qr, q0)

)
dq0 · · · dqk, (6.3.6)

where

fr,j(qr, q0) =
{
Qr
(
F−1

Ψ (qr), F
−1
Ψ (q0)

)}Mr,j

×
{

1−Qr
(
F−1

Ψ (qr), F
−1
Ψ (q0)

)}mr,j−Mr,j

. (6.3.7)

Each likelihood term involves high-dimensional numerical integration over a
complicated function. Especially for model (2b), when the integrand is a
product of maxima, a nondifferentiable function, this is a computational bur-
den. Fortunately, we can simplify the likelihood to a sum of lower-dimensional
integrals over smoother functions thanks to the following result.

Lemma 6.3.1. Define Ij and fr,j for r = 1, . . . , k and j = 1, . . . , n as in (6.3.6)
and (6.3.7), where Qr is the function corresponding to the Gumbel max-factor
model, model (2b). Define

gr(q) = exp

{
log(q) exp

(
νr − µr
σr

)}
,

hr,j(q;µr) = FΨ (µr − σr log {− log(q)})Mr,j

× [1− FΨ(µr − σr log {− log(q)})]mr,j−Mr,j .
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Let R = {1, . . . , k} and let P(R) denote the power set of R. Then

Ij =
∑

I∈P(R)

∫ 1

0

 ∏
r∈R\I

gr(q0)hr,j(q0;µr)

(∏
r∈I

∫ 1

gr(q0)

hr,j(qr; νr) dqr

)
dq0.

The proof of this result is provided in Appendix 6.A.

The parameter vector θ is estimated by maximizing the log-likelihood
Ln(θ). After estimating θ, the implied marginal and joint loss probabilities,
(6.3.1) and (6.3.2), are obtained by plugging in the estimator of θ in expressions
(6.3.3) and (6.3.4), yielding π̂r and π̂rs, respectively.

6.4 Nonparametric estimation

Nonparametric estimators can be useful as a benchmark for model-based es-
timators, especially in the case of model uncertainty. Usually, the nonpara-
metric estimators presented in Section 6.4.1 are used, see for example Frey and
McNeil (2003). However, since the numbers mr,j may vary strongly over the
years, more accurate nonparametric estimators are obtained by assigning more
weight to those years for which there is more information (Section 6.4.2).

6.4.1 Preliminary estimators

Define the observed proportions of risks producing losses as

Q̂r,j = Mr,j/mr,j , for r ∈ {1, . . . , k}, j ∈ {1, . . . , n}.

For r 6= s, define the estimators

π̂(l)
r =

1

n

n∑
j=1

Mr,j(Mr,j − 1) · · · (Mr,j − l + 1)

mr,j(mr,j − 1) · · · (mr,j − l + 1)
, (6.4.1)

π̂(l1,l2)
rs =

1

n

n∑
j=1

(
Mr,j(Mr,j − 1) · · · (Mr,j − l1 + 1)

mr,j(mr,j − 1) · · · (mr,j − l1 + 1)
(6.4.2)

×Ms,j(Ms,j − 1) · · · (Ms,j − l2 + 1)

ms,j(ms,j − 1) · · · (ms,j − l2 + 1)

)
, (6.4.3)

for l < mr,j , l1 < mr,j and l2 < ms,j . To see that (6.4.1) and (6.4.3) are
unbiased estimators, recall that if the random variable M is binomially distrib-
uted with n trials and success probability p, then we have for l ∈ {1, . . . , n}
that

E[M(M − 1) · · · (M − l + 1)] = n(n− 1) · · · (n− l + 1) pl. (6.4.4)
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Conditionally on Qj , the random variable Mr,j follows the binomial distribu-
tion with mr,j trials and success probability Qr,j . Hence, for l < mr,j ,

E[π̂(l)
r ] =

1

n

n∑
j=1

E
[
E
[
Mr,j(Mr,j − 1) · · · (Mr,j − l + 1)

mr,j(mr,j − 1) · · · (mr,j − l + 1)

∣∣∣∣Qj

]]

=
1

n

n∑
j=1

E[Qlr,j ] = π(l)
r ,

and similarly, E[π̂
(l1,l2)
rs ] = π

(l1,l2)
rs .

6.4.2 Weighted estimators

For the marginal loss probabilities πr, consider estimators of the form

π̃r(wr) =

n∑
j=1

wr,jQ̂r,j , r ∈ {1, . . . , k},

where Q̂r,1, . . . , Q̂r,n have a common expectation E[Q̂r,j ] = πr and possibly

different variances Var[Q̂r,j ] = σ2
r,j . The weight vector wr = (wr,1, . . . , wr,n)

has non-negative entries. We seek optimal weights, in the sense that we min-
imize the mean squared error of π̃r(wr) as a function of wr, leading to weights
wr,1,opt, . . . , wr,n,opt. The same recipe can be followed for the joint loss prob-
abilities πrr and πrs.

Theorem 6.4.1. The estimators (πr,opt, πrr,opt, πrs,opt) for r, s,∈ {1, . . . , k}
and r 6= s that minimize the mean squared error of (π̃r(wr), π̃rr(wr), π̃rs(wr))
are

1. πr,opt =

n∑
j=1

wr,j,opt
Mr,j

mr,j
, wr,j,opt =

σ−2
r,j

π−2
r +

∑n
t=1 σ

−2
r,t

,

σ2
r,j =

πr
mr,j

+

(
1− 1

mr,j

)
πrr − π2

r ;

2. πrr,opt =

n∑
j=1

wrr,j,opt
Mr,j(Mr,j − 1)

mr,j(mr,j − 1)
, wrr,j,opt =

σ−2
rr,j

π−2
r +

∑n
t=1 σ

−2
rr,t

,

σ2
rr,j = mr,j(mr,j − 1)

{
(2−mr,j(mr,j − 1)πrr)πrr

+ 4(mr,j − 2)π(3)
r + (mr,j − 2)(mr,j − 3)π(4)

r

}
;
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3. πrs,opt =

n∑
j=1

wrs,j,opt
Mr,jMs,j

mr,jms,j
, wrs,j,opt =

σ−2
rs,j

π−2
r +

∑n
t=1 σ

−2
rs,t

,

σ2
rs,j = m−1

r,jm
−1
s,j

{
(1−mr,jms,jπrs)πrs

+ (ms,j − 1)π(1,2)
rs + (mr,j − 1)π(2,1)

rs

+ (1−ms,j −mr,j +mr,jms,jπ
(2,2)
rs )

}
.

The variances of these estimators are given by

Var[πr,opt] =
1∑n

j=1 σ
−2
r,j

,

Var[πrr,opt] =
1∑n

j=1 σ
−2
rr,j

, Var[πrs,opt] =
1∑n

j=1 σ
−2
rs,j

.

The proof of this result is provided in Appendix 6.A. As the quantities σr,j ,

σrr,j , and σrs,j depend on the unknown quantities π
(l)
r and π

(l1,l2)
rs , we replace

these with their preliminary estimators π̂
(l)
r and π̂

(l1,l2)
rs from (6.4.1) and (6.4.3)

respectively.

Definition 6.4.1. Let π̂
(l)
r and π̂

(l1,l2)
rs be defined as in (6.4.1) and (6.4.3).

The estimators (π̂r,opt, π̂rr,opt, π̂rs,opt) of (πr, πrr, πrs) for r, s,∈ {1, . . . , k} and
r 6= s are defined as

1. π̂r,opt =

n∑
j=1

ŵr,j,opt
Mr,j

mr,j
, ŵr,j,opt =

σ̂−2
r,j

π̂−2
r +

∑n
t=1 σ̂

−2
r,t

,

σ̂2
r,j =

π̂r
mr,j

+

(
1− 1

mr,j

)
π̂rr − π̂2

r ;

2. π̂rr,opt =

n∑
j=1

ŵrr,j,opt
Mr,j(Mr,j − 1)

mr,j(mr,j − 1)
, ŵrr,j,opt =

σ̂−2
rr,j

π̂−2
r +

∑n
t=1 σ̂

−2
rr,t

,

σ̂2
rr,j = mr,j(mr,j − 1)

{
(2−mr,j(mr,j − 1)π̂rr)π̂rr

+ 4(mr,j − 2)π̂(3)
r + (mr,j − 2)(mr,j − 3)π̂(4)

r

}
;

3. π̂rs,opt =

n∑
j=1

ŵrs,j,opt
Mr,jMs,j

mr,jms,j
, ŵrs,j,opt =

σ̂−2
rs,j

π̂−2
r +

∑n
t=1 σ̂

−2
rs,t

,

σ̂2
rs,j = m−1

r,jm
−1
s,j

{
(1−mr,jms,j π̂rs)π̂rs

+ (ms,j − 1)π̂(1,2)
rs + (mr,j − 1)π̂(2,1)

rs

+ (1−ms,j −mr,j +mr,jms,j π̂
(2,2)
rs )

}
.
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Approximate standard errors of these estimators can be obtained by plug-
ging in the estimators of σ2

r,j , σ
2
rr,j and σ2

rs,j into the variances obtaind in
Theorem 6.4.1.

A simulation study illustrating the performance of these estimators is pro-
vided in Appendix 6.B. We found that the relative root mean squared error
(RRMSE) of the estimators of πr and πrs is significantly lower for the weighted
estimators than for the preliminary estimators. Moreover, the weighted non-
parametric estimators have low RRMSE in comparison with the maximum
likelihood estimators of Section 6.3.4, especially when the parametric model is
misspecified, that is, when we maximize the likelihood of the parameters of a
factor model that is different from the true underlying model.

6.5 Application to credit risk

6.5.1 Credit risk data

We study one-year default rates for groups of obligors formed into static pools
(cohorts). The default rates are taken from Table 13 in Standard and Poor’s
(2001), where the period of study is 1981–2000. The total data comprises
around 9200 obligors rated as of January 1st, 1981, or first rated between that
date and December 31st, 1999. A company is considered defaulted on the date
when it is unable to fulfill a payment or any other financial obligation for the
first time. Companies are given credit ratings ranging from AAA to CCC. We
consider here the ratings BB, B, and CCC which form the group “speculat-
ive grade”, since for higher-rated classes the data contain a too small amount
of defaults to do meaningful inference. The starting year, 1981, does not in-
clude companies that defaulted in that year. Since it contains zero defaults by
construction, we removed that year from our study.

Few obligors default early in their rating history. If default rates are ob-
tained by dividing the number of defaults by all outstanding ratings, then
consequently the default rates will be comparatively low during periods of high
rating activity. To avoid any misleading results, the data are presented for co-
horts called static pools. A static pool is formed on the first day of each year,
and includes all companies in the study. The pools are called static because
their membership remains constant over time. The obligors are followed from
year to year within each pool. The ratings of the first and last days of each year
are compared. Companies that default (D) or whose ratings have been with-
drawn (N.R., not rated) are excluded from subsequent pools. For instance, we
start with all companies that had outstanding non-defaulted ratings on Janu-
ary 1st, 1981. The 1982 static pool consisted of all companies that survived
1981 plus all companies that were first rated in 1981. In the scope of our time
period, 9169 first-time rated organizations were added to the static pools, 746
companies defaulted and 3118 companies were excluded due to a N.R. rating.
A company usually obtains a N.R. rating due to paid-off debt, a result of mer-
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gers and acquisitions, or a lack of cooperation with the rating agency. Figure
6.1 shows the total number of firms per rating class, the number of defaulted
firms per rating class and the proportion of defaults per rating class.

6.5.2 Nonparametric estimation

Table 6.1 displays the estimators π̂r,opt and π̂rs,opt from Definition 6.4.1, where
r, s ∈ {BB,B,CCC}. The standard errors are in parentheses. These values
serve as benchmarks to evaluate the accuracy of the parametric factor models
fitted in the next section.

BB B CCC

π̂r,opt 0.0107 (0.0024) 0.0511 (0.0064) 0.2069 (0.0225)

π̂rs,opt × 1000 BB B CCC

BB 0.151 (0.081) 0.649 (0.206) 2.438 (0.682)
B 0.649 (0.206) 3.075 (0.935) 11.64 (2.438)
CCC 2.438 (0.692) 11.64 (2.438) 49.02 (8.887)

Table 6.1: Standard and Poor’s (2001) data: nonparametric estimators of the
marginal default probabilities πr and the joint default probabilities πrs.

6.5.3 Parametric factor models

We estimated the parameters of the parametric factor models (1a), (2a), (1b),
and (2b). Table 6.2 shows the AIC and BIC for these models. Note that the
number of parameters for models (2a) and (2b) is reduced:

• for model (2a), we find τB → 0, i.e. class B does not require a specific
random effect and is influenced by the global effect only;

• for model (2b), we find νB , νCCC → −∞, i.e. classes B and CCC do
not require specific random effects and are influenced by the global effect
only.

In terms of both AIC and BIC, the one-factor models (1a) and (1b) perform
better than a multi-factor normal model (model 2a). However, the Gumbel
max-factor model (2b) appears to be the best alternative. Between models
(1b) and (2b) we can also perform a likelihood ratio test, since model (1b) is
a submodel of model (2b) with νBB → −∞. The value of the likelihood ratio
test statistic is equal to 2.76. The hypothesis for νBB = −∞ concerns a value
at the boundary of the parameter space. The asymptotic null distribution
of the likelihood ratio test statistic 2 log(Ln) is a mixture of two chi-squared
distributions; see Self and Liang (1987). We reject the null hypothesis of the
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Figure 6.1: Standard and Poor’s (2001) data: the total number of firms per rat-
ing class mr (top), the number of defaulted firms per rating class Mr (middle)

and the proportion of defaults per rating class Q̂r = Mr/mr for the years
1982–2000, where r ∈ {BB,B,CCC}.
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Model # parameters − logLn AIC BIC

(1a) 6 154.707 321.41 316.05
(2a) 8 154.445 324.89 317.74
(1b) 6 154.517 321.03 315.67
(2b) 7 153.138 320.28 314.02

Table 6.2: Standard and Poor’s (2001) data: overview of the number of para-
meters, the negative log-likelihood, AIC, and BIC for the four parametric mod-
els presented in Subsection 6.3.3

.

one-factor model at a significance level of α = 0.05, corresponding to a critical
value of 1.92.

Table 6.3 shows estimates and standard errors for the parameters of model
(2b), together with implied estimates of the marginal default probabilites πr
and the joint default probabilities πrs, obtained using expressions (6.3.3) and
(6.3.4). Both π̂r and π̂rs match the nonparametric ones reasonably well.

A visual test is presented in the form of prediction intervals for the numbers
of defaults, Mr,j . We simulate 5000 realizations of QBB , QB , QCCC , accounting
for the correlation structure, i.e., we simulate 5000 realizations of model (2b)
using the parameter values that we obtained for the corresponding model. Us-
ing QBB , QB , QCCC we simulate 5000 realizations of Mr,j , where mr,j is given
by the credit risk data. Finally, we calculate the prediction intervals, obtained
by isolating the 4500 central realizations. The results are presented in Fig-
ure 6.2. The observed number of defaults generally stays within the prediction
intervals; departures are in line with the 90% confidence level. These intervals
provide the risk manager with useful ranges for the number of defaults.

It is also interesting to compare the distribution function of the conditional
default probabilities Qr(Ψ) for models (1a)–(1b) to models (2a)–(2b). Figure
6.3 shows the survival functions of Qr(Ψ) for r ∈ {BB,B,CCC}. The fatness
of the right tail of Qr(Ψ) greatly distinguishes the Gumbel models from the
normal ones, even if all distribution functions agree to a large extent around
the mean value. The impact of replacing the traditional normally distributed
latent factor with a Gumbel one is clearly visible for high quantiles.

6.5.4 Value-at-Risk and Expected Shortfall

The estimated models in the previous section can be used to obtain estimates
for risk measures such as Value-at-Risk or Expected Shortfall. Similarly to
Frey and McNeil (2003), we proceed as follows. Consider a portfolio of 1000
obligors where the numbers of BB, B, and CCC-rated firms are 450, 500 and
50 respectively; these proportions correspond roughly to the numbers in the
Standard and Poor’s data. Let m = 1000 denote the total number of obligors
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Figure 6.2: Standard and Poor’s (2001) data: prediction intervals for the
number of defaults obtained by simulating 5000 default matrices Mr,j from
QBB , QB , QCCC and isolating the 4500 central observations for the Gumbel
max-factor model. The dashed lines show the actual number of defaults.
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Figure 6.3: Standard and Poor’s (2001) data: excess probabilities for condi-
tional default probabilities Qr(Ψ) for r ∈ {BB,B,CCC}.
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BB B CCC

µr −1.66 (0.07) −1.18 (0.04) −0.54 (0.07)
νr −1.73 (0.11) — —
σr 0.112 (0.033) 0.124 (0.029) 0.162 (0.053)

π̂r 0.0109 0.0520 0.2120

π̂rs × 1000 BB B CCC

BB 0.215 0.781 2.795
B 0.781 3.512 12.96
CCC 2.795 12.96 49.73

Table 6.3: Standard and Poor’s (2001) data: maximum likelihood parameter
estimates and standard errors for the Gumbel max-factor model (2b), together
with the implied estimates of default probabilities.

and let mr ∈ {450, 500, 50} denote the number of obligors per rating class.
Let Yr,i = 1 correspond to the default of obligor i in rating class r. We are
interested in computing the distribution of the overall loss L,

L =

k∑
r=1

mr∑
i=1

er,i∆r,iYr,i,

where er,i denotes the overall exposure of company i in rating class r and ∆r,i

is the random proportion of the exposure which is lost in case of default. We
will assume er,i = ∆r,i = 1 for all i and r, leading to

L =

k∑
r=1

mr∑
i=1

Yr,i =

k∑
r=1

Mr = M,

where Mr represents the number of defaults in rating class r and M represents
the total number of defaults. For k = 3 we have

P[M = y] = E [P [M1 +M2 +M3 = y | Ψ]]

=

u1∑
x1=l1

u2∑
x2=l2

{
E[P[M1 = x1 | Ψ]P[M2 = x2 | Ψ]

× P[M3 = y − x1 − x2 | Ψ]]
}
,

where l1 = max{0, y −m2 −m3}, u1 = min{y,m1}, l2 = max{0, y − x1 −m3}
and u2 = min{y − x1,m2}. Moreover,

P[Mr = xr | Ψ] =

(
mr

xr

)
Qr(Ψ)xr (1−Qr(Ψ))mr−xr . (6.5.1)
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The expected value is then computed by integrating over the distribution of
Ψ. We calculate the Value-at-Risk and the Expected Shortfall, i.e.,

VaRα(M) = min{x : P[M ≤ x] ≥ α},

ESα(M) =
1

P[M > VaRα]

m∑
x=VaRα+1

xP[M = x],

for α = 0.99. This is done by plugging in the parameter estimates obtained
in Section 5.3 into (6.5.1), for the one-factor normal model and the max-factor
Gumbel model. We obtain VaRα(M) = 96 and ESα(M) = 109 for the normal
model and VaRα(M) = 124 and ESα(M) = 155 for the Gumbel model. The
financial impact of the max-factor model thus appears to be considerable, as
measured by the increase in VaR and ES when moving from the traditional
normal setting to the max-Gumbel one.

6.6 Discussion

In this paper, we have proposed max-factor models to account for depend-
encies between individual loss occurrence indicators. Compared to the more
traditional approach where the correlation is induced by linear combinations
of random effects, the max-factor specification prohibits diversification or com-
pensation between hidden factors as only the largest effect controls individual
risk levels. The max-factor specification appears to be particularly appealing
to model the occurrence of shocks affecting policies in the portfolio, as well as
the effect of common economic conditions. Compared to previous literature,
these shocks increase the conditional loss probability without systematically
inducing losses on all the contracts.

This new model produces a good fit on the Standard and Poor’s (2001)
credit risk data set. Besides classical goodness-of-fit measures based on the
log-likelihood (such as AIC and BIC), we have also proposed novel nonpara-
metric estimators, minimizing the mean squared error, that can be used as a
benchmark to evaluate the relative merits of the different models.

Future work might include a dynamic component or extend the method-
ology to take into account both latent and observable factors. However, the
Standard and Poor’s data studied in this paper are not adequate to tackle such
issues, since they do not contain any information on the companies included
nor on their transitions between rating classes.

The max-factor decomposition may also be interesting for credibility mod-
els decomposing the individual unobservable risk proneness in a hierarchical
way. Again, this approach is desirable in situations where no compensation is
possible between the random effects associated to the different levels but the
worst case drives the individual risk proneness. We leave this topic for a future
investigation.



6.A. Proofs 153

6.A Proofs

In order to establish the validity of Theorem 6.4.1, we will need expressions for
some moments of the random variables Mr,j .

Lemma 6.A.1. For r ∈ {1, . . . , k}, we have

1. E[Mr,j ] = mr,jπr;

2. E[Mr,j(Mr,j − 1)] = mr,j(mr,j − 1)πrr;

3. Var[Mr,j ] = mr,j(πr + (mr,j − 1)πrr −m2
r,jπ

2
r);

4. Var[Mr,j(Mr,j − 1)] =mr,j(mr,j − 1)
[
(2−mr,j(mr,j − 1)πrr)πrr

+ 4(mr,j − 2)π(3)
r

+ (mr,j − 2)(mr,j − 3)π(4)
r

]
;

and for r, s ∈ {1, . . . , k}, r 6= s,

5. E[Mr,jMs,j ] = mr,jms,jπrr;

6. Var[Mr,jMs,j ] =mr,jms,j

[
(1−mr,jms,jπrs)πrs

+ (ms,j − 1)π(1,2)
rs + (mr,j − 1)π(2,1)

rs

+ (1−ms,j −mr,j +mr,jms,jπ
(2,2)
rs )

]
.

Proof of Lemma 6.A.1. 1. EE[Mr,j ] = E[E[Mr,j | Qj ]]

= E[mr,jQr,j ] = mr,jπr.

2. E[Mr,j(Mr,j − 1)] = E[E[Mr,j(Mr,j − 1) | Qj ]]

= E[mr,j(mr,j − 1)Q2
r,j ]

= mr,j(mr,j − 1)πrr,

where the second step follows from equation (6.4.4).

3. Var[Mr,j ] = E[M2
r,j ]− E[Mr,j ]

2

= E[Mr,j(Mr,j − 1)] + E[Mr,j ]− E[Mr,j ]
2

= mr,j(mr,j − 1)πrr +mr,jπr −m2
r,jπ

2
r .

4. We first note that

E[M3
r,j ] = E[Mr,j(Mr,j − 1)(Mr,j − 2)] + 3E[Mr,j(Mr,j − 1)] + E[Mr,j ],

E[M4
r,j ] = E[Mr,j(Mr,j − 1)(Mr,j − 2)(Mr,j − 3)] + 6E[M3

r,j ]

+ 7E[Mr,j(Mr,j − 1)] + E[Mr,j ].
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Then, using again equation (6.4.4),

Var[Mr,j(Mr,j − 1)] = E[M4
r,j ]− 2E[M3

r,j ] + E[M2
r,j ]− E[Mr,j(Mr,j − 1)]2

= E[Mr,j(Mr,j − 1)(Mr,j − 2)(Mr,j − 3)]

+ 2E[Mr,j(Mr,j − 1)]

+ 4E[Mr,j(Mr,j − 1)(Mr,j − 2)]− E[Mr,j(Mr,j − 1)]2

= mr,j(mr,j − 1)
[
(2−mr,j(mr,j − 1)πrr)πrr

+ 4(mr,j − 2)π(3)
r + (mr,j − 2)(mr,j − 3)π(4)

r

]
.

5. E[Mr,jMs,j ] = E[E[Mr,jMs,j | Qj ]]

= E[mr,jms,jQr,jQs,j ] = mr,jms,jπrs.

6. Var[Mr,jMs,j ] = E[E[M2
r,j | Qj ]E[M2

s,j | Qj ]]− E[Mr,jMs,j ]
2

= mr,jms,j

[
(1−mr,jms,jπrs)πrs

+ (ms,j − 1)π(1,2)
rs + (mr,j − 1)π(2,1)

rs

+ (1−ms,j −mr,j +mr,jms,jπ
(2,2)
rs )

]
.

We are now ready to proceed to the proof of the announced result.

Proof of Theorem 6.4.1. Write the estimators of πr as

π̃r(wr) =

n∑
j=1

wr,jQ̂r,j , r ∈ {1, . . . , k},

where Q̂r,1, . . . , Q̂r,n have common expectation E[Q̂r,j ] = πr (Lemma 6.A.1,

item 1) and possibly different variances Var[Q̂r,j ] = σ2
r,j , where

σ2
r,j =

1

m2
r,j

Var[Mr,j ] =
πr
mr,j

+

(
1− 1

mr,j

)
πrr − π2

r ,

by Lemma 6.A.1 (item 3) and where the weight vector wr = (wr,1, . . . , wr,n)
has nonnegative entries. We wish to minimize the mean squared error (MSE)
of π̃r(wr) as a function of wr,

MSE[π̃r(wr)] = Var[π̃r(wr)] + (E[π̃r(wr)− πr])2

=

n∑
j=1

w2
r,jσ

2
r,j +

( n∑
j=1

wr,j − 1

)2

µ2
r.
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Setting the partial derivatives with respect to wr,1, . . . , wr,n equal to zero gives
the solution

wr,j,opt =
σ−2
r,j

π−2
r +

∑n
t=1 σ

−2
r,t

, j = 1, . . . , n,

MSE[π̃r(wr,opt)] =
1

π−2
r +

∑n
j=1 σ

−2
r,j

,

where wr,opt = (wr,1,opt, . . . , wr,n,opt). For the second-order probabilities πrr
and πrs, the same recipe can be followed. Their estimators will use the quantit-
ies Var[Mr,j(Mr,j−1)] and Var[Mr,jMs,j ]. These are calculated in Lemma 6.A.1
(items 4 and 6).

Remark 6.A.1. In practice, the estimators σ̂2
r,j and σ̂2

rr,j from Definition 6.4.1
can be negative. When this happens, a simple solution is to replace the pre-

liminary estimator π̂
(l)
r by the estimator

π̌(l)
r =

1

n

n∑
j=1

M l
r,j

ml
r,j

.

Note that π̌
(l)
r > π̂

(l)
r for l > 1. Using π̌

(l)
r instead of π̂

(l)
r as a prelimin-

ary estimator in Definition 6.4.1 ensures that both σ̂2
r,j and σ̂2

rr,j are positive.
Asymptotically as mr,j → ∞, this method is equivalent to the one described
in Definition 6.4.1.

Proof of Lemma 6.3.1. To prove Lemma 6.3.1 for every k ∈ N, first observe
that

νr − σr log (− log(qr)) > µr − σr log (− log(q0)) ⇐⇒ qr > gr(q0).

Suppose k = 1. Then R = {1} and

Ij =

∫ 1

0

∫ 1

0

f1,j(q0, q1) dq1 dq0

=

∫ 1

0

∫ 1

0

1 (q1 ≤ g1(q0))h1,j(q0;µ1) + 1 (q1 > g1(q0))h1,j(q1; ν1) dq1 dq0

=

∫ 1

0

g1(q0)h1,j(q0;µ1) dq0 +

∫ 1

0

∫ 1

g1(q0)

h1,j(q1; ν1) dq1 dq0,

which is equal to the result of Lemma 6.3.1 since P(R) = {∅, {1}}. Next,
define Rk = {1, . . . , k} and assume that the final expression in Lemma 6.3.1 is
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valid. Let dq1:k denote dq1 · · · dqk. Then for Rk+1 = {1, . . . , k + 1},

Ij =

∫
[0,1]2

fk+1,j(q0, qk+1)

(∫
[0,1]k

(
k∏
r=1

fr,j(q0, qr)

)
dq1:k

)
dqk+1 dq0

=

∫ 1

0

gk+1(q0)hk+1,j(q0;µk+1)

(∫
[0,1]k

(
k∏
r=1

fr,j(q0, qr)

)
dq1:k

)
dq0

+

∫ 1

0

∫ 1

gk+1(q0)

hk+1,j(qk+1; τk+1)

(∫
[0,1]k

(
k∏
r=1

fr,j(q0, qr)

)
dq1:k

)
dqk+1 dq0

=
∑

I∈P(Rk)

∫ 1

0

 ∏
r∈{Rk\I}∪{k+1}

gr(q0)hr,j(q0;µr)


×

(∏
r∈I

∫ 1

gr(q0)

hr,j(qr; νr) dqr

)
dq0

+
∑

I∈P(Rk)

∫ 1

0

 ∏
r∈Rk\I

gr(q0)hr,j(q0;µr)


×

 ∏
r∈I∪{k+1}

∫ 1

gr(q0)

hr,j(qr; νr) dqr

 dqk+1 dq0

=
∑

I⊂P(Rk+1)

∫ 1

0

 ∏
r∈Rk+1\I

gr(q0)hr,j(q;µr)


×

(∏
r∈I

∫ 1

gr(q0)

hr,j(qr; νr) dqr

)
dqk+1 dq0.

For the last step, note that if I ∈ P(Rk+1), then either I ∈ P(Rk) so that
{Rk+1 \ I} = {Rk \ I} ∪ {k + 1} and we get the first term on the penultimate
line, or I /∈ P(Rk) and we get the second term on the penultimate line.

6.B Simulation study

In Section 6.3.4, the parameter vector θ of a factor model is estimated using
maximum likelihood estimation, after which the implied marginal and joint
default probabilities πr and πrs are obtained by plugging in the estimate of θ
in expressions (6.3.3) and (6.3.4). In Section 6.4, two nonparametric estimators
of πr and πrs are introduced. Suppose that the conditional default probabilities
Qr,j are generated from one of the multi-factor models in Section 6.3.3, i.e.,
model (2a) or (2b). We wish to answer the following questions.
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• Do the weighted nonparametric estimators of (πr, πrs) defined in Sec-
tion 6.4.2 perform better than the unweighted nonparametric estimators
from Section 6.4.1?

• Does nonparametric estimation (weighted or unweighted) lead to better
or worse estimates of (πr, πrs) than via maximum likelihood estimation
of the parameters of the true model?

• Does maximum likelihood estimation of the parameters of a one-factor
submodel provide us with worse estimates of (πr, πrs) than maximum
likelihood estimation of the parameters of the true model?

• Does maximum likelihood estimation of the parameters of another multi-
factor model lead to worse estimators of (πr, πrs) than maximum likeli-
hood estimation of the parameters of the true model, or is the estimation
quality of the (joint) default probabilities independent of the underlying
data-generating process?

More specifically, we proceed as follows. The number of risks, mr,j , in risk
category r ∈ {1, . . . , k} and time period j ∈ {1, . . . , n} is generated randomly
using a beta-binomial model, for k = 2 and n = 19. The conditional de-
fault probabilities Qr,j are then generated using models (2a) and (2b), where
the parameter values are chosen in such a way that πr and πrs very roughly
resemble the default probabilities of the S&P rating classes B and CCC; see
Table 6.4. The quantities πr and πrs are then estimated by the two nonpara-
metric estimators and by maximizing the likelihood under the assumption of
one of the parametric models (1a), (2a), (1b), and (2b). We repeat this 1000
times and we compare the results using the relative root mean squared error
(RRMSE), i.e., the root mean squared error divided by the true parameter
value. Note that if the weighted nonparametric estimator leads to a negat-
ive value of σ̂r,j or σ̂rr,j , we use the unweighted nonparametric estimator; see
Remark 6.A.1. This happens less than 1% of the time.

The results are presented in Tables 6.5 and 6.6. Table 6.5 shows the RRMSE
of the estimators of the marginal default probabilities, πr. The methods are
compared in terms of the decrease, ∆, of RRMSE in percent with respect to
the best method. Consequently, the best method has ∆ = 0. When calculating
∆, we take the sum of the values of the two categories. In terms of RRMSE,
the weighted nonparametric estimator performs slightly better than the non-
weighted one. Maximum likelihood estimation beats nonparametric estimation
when the data are generated from model (2b), but it is the other way around
when data are generated from model (2a). Misspecification of the model, for
example, estimating the parameters of model (2a) although data are generated
from model (2b), has no negative effect when data are generated from model
(2b).

Table 6.6 shows the RRMSE of the estimators of the joint default probabil-
ities πrs. Again, the weighted nonparametric estimator performs much better
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Gumbel normal

r = 1 r = 2 r = 1 r = 2

µr −1.15 −0.55 µr −1.60 −0.85
νr −1.30 −1.00 τr 0.13 0.16
σr 0.11 0.15 σr 0.18 0.28

πr 0.0585 0.2091 πr 0.0591 0.2093

πrs × 100 0.397 1.365 πrs × 100 0.394 1.401
1.365 4.759 1.401 4.980

Table 6.4: Parameter values for the max-factor Gumbel model (left) and the
sum-factor normal model (right) used in the simulation study.

Gumbel normal

r = 1 r = 2 ∆ r = 1 r = 2 ∆

NP 0.116 0.095 4 NP 0.110 0.119 1
NP weighted 0.112 0.092 1 NP weighted 0.109 0.119 0

Model (1a) 0.110 0.094 0 Model (1a) 0.112 0.119 2
Model (2a) 0.110 0.094 0 Model (2a) 0.111 0.119 1
Model (1b) 0.109 0.093 0 Model (1b) 0.120 0.121 6
Model (2b) 0.110 0.094 0 Model (2b) 0.121 0.121 6

Table 6.5: Relative root mean squared error (RRMSE) of estimators of πr for
data generated from a Gumbel max-factor model (left) and a normal sum-
factor model (right) with parameter values as in Table 6.4. The methods are
compared using ∆, the increase of RRMSE in percent with respect to the best
method, which has ∆ = 0.

than the non-weighted estimator. Model misspecification has again less effect
when data are generated from model (2b) than when data are generated from
model (2a). Compared with the results in Table 6.5, for the joint default prob-
abilities we see a larger increase in RRMSE if we estimated the parameters of
a one-factor submodel instead of a multi-factor model.

A final thing worth noticing is that when estimating the parameters of mod-
els based on the normal distribution we obtain better estimators of low default
probabilities (here r = 1) than when using models based on the Gumbel distri-
bution. For higher default probabilities (here r = 2), the quality of estimation
differs less. The higher RRMSEs for the joint default probabilities based on
the parameters of the Gumbel models are entirely caused by a rather high bias;
while all estimators stemming from the Gumbel models exhibit (high) posit-
ive bias, the estimators stemming from the normal models are all negatively
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biased. Thus, although using factor models based on the normal distribution
leads to estimators with lower RRMSE, it is an important drawback of models
(1a) and (2a) that they are underestimating the true default probabilities.

Gumbel normal

NP r = 1 r = 2 ∆ NP r = 1 r = 2 ∆

r = 1 0.316 0.222 13 r = 1 0.253 0.207 7
r = 2 0.222 0.211 r = 2 0.207 0.255

NP weighted r = 1 r = 2 ∆ NP weighted r = 1 r = 2 ∆

r = 1 0.266 0.202 0 r = 1 0.230 0.202 0
r = 2 0.202 0.197 r = 2 0.202 0.238

Model (1a) r = 1 r = 2 ∆ Model (1a) r = 1 r = 2 ∆

r = 1 0.263 0.204 1 r = 1 0.263 0.216 8
r = 2 0.204 0.202 r = 2 0.216 0.245

Model (2a) r = 1 r = 2 ∆ Model (2a) r = 1 r = 2 ∆

r = 1 0.258 0.204 0 r = 1 0.248 0.211 5
r = 2 0.204 0.202 r = 2 0.211 0.243

Model (1b) r = 1 r = 2 ∆ Model (1b) r = 1 r = 2 ∆

r = 1 0.289 0.210 6 r = 1 0.397 0.274 41
r = 2 0.210 0.203 r = 2 0.274 0.271

Model (2b) r = 1 r = 2 ∆ Model (2b) r = 1 r = 2 ∆

r = 1 0.271 0.209 3 r = 1 0.358 0.259 32
r = 2 0.209 0.203 r = 2 0.259 0.270

Table 6.6: Relative root mean squared error (RRMSE) of estimators of πrs
for data generated from a Gumbel max-factor model (left) and a normal sum-
factor model (right) with parameter values as in Table 6.4. The methods are
compared using ∆, the increase of RRMSE in percent with respect to the best
method, which has ∆ = 0.





Chapter 7

Conclusion

One of the aims of this thesis was to develop new estimation methods for
parametric models for extremal dependence of high-dimensional data. Using
Einmahl et al. (2012) as a starting point, in Chapter 2 we proposed the pair-
wise M-estimator, which is particularly adapted to high-dimensional (spatial)
models since only pairs of random variables are used in the estimation proced-
ure. Although for dimensions d in the order of a hundred, using all d(d− 1)/2
pairs of variables is feasible, this is no longer a possibility when one focuses
on a spatial problem with thousands of measuring stations. Since we saw that
the quality of estimation might actually improve when limiting the number of
pairs to pairs of neighbouring stations only, this is not necessarily a bad thing.
In Chapter 2 we saw that numerically this method might be cumbersome when
using the optimal weight matrix, since it requires four-dimensional numerical
integration. Moreover, estimation without an optimal weight matrix was fast
because the models we considered had analytical expressions for the integrated
bivariate stable tail dependence function, but this does not need to be the case
for all parametric models.

A direct method of reducing the number of integrals and therefore reducing
the computation time is by estimating the Pickands dependence function A :
∆d−1 → [1/d, 1] instead of the stable tail dependence function `. These two
functions are connected through

`(x) =

 d∑
j=1

xj

A

(
x1∑d
j=1 xj

, . . . ,
xd−1∑d
j=1 xj

)
, x ∈ [0,∞)d.

Let Ân,k denote any initial estimator of A. For locations su, sv ∈ R2, the

bivariate margins of A and Ân,k are

Auv(t; θ) = `uv(t, 1− t; θ), Ân,k,uv(t; θ) = ̂̀
n,k,uv(t, 1− t).
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and a new estimator is obtained by following the same approach as in Chapter
2; the non-weighted estimator has the form

θ̆n = arg min
θ∈Θ

∑
(u,v)

(∫ 1

0

Ân,k,uv(t)−Auv(t) dt

)2

.

Only two-dimensional numerical integration is necessary if we add an optimal
weight matrix. Moreover, there exist a lot of other initial estimators of A. For
instance, Ân(t) does not satisfy the lower bound max(t, 1 − t) of A nor is it
convex. A better nonparametric estimator is obtained by taking the greatest
convex minorant of max(Ân(t), t, 1−t) (Genest and Segers, 2009; Bücher et al.,
2011). Other initial estimators of A could be used as well (Pickands III, 1981;
Deheuvels, 1991; Capéraà et al., 1997; Marcon et al., 2016; Vettori et al., 2016).
More complicated spatial models like the extremal t-process, of which the
Brown–Resnick process is a special case, could be estimated using an estimator
of this form.

In Chapter 3 we presented the continuous updating weighted least squares
estimator, which is numerically easier than the pairwise M-estimator and is
thus not limited to pairwise inference. We focused on the estimation of a non-
differentiable model, the max-linear model, although the estimator performs
satisfactory for all types of models. Similarly to a Pickands dependence func-
tion estimator described above, the possibilities for an initial estimator are not
limited to the (bias-corrected) empirical tail dependence function: we could
use block maxima or threshold exceedances, parametric or non-parametric es-
timators, the possibilities are endless.

In Chapters 2 and 3, we have always treated the margins by computing
their ranks and using the integral probability transform. However, we could
also model the margins parametrically above a high threshold by a generalized
Pareto distribution; in this case, an estimator of the stable tail dependence
function could be obtained as

˘̀
n,k(x) =

1

k

n∑
i=1

1

{(
1 + ξ̂

Xi − u
η̂

)1/ξ̂

+

�
1

x

}
,

where η̂ and ξ̂ are vectors of estimators of the parameters of the generalized
Pareto distribution above the threshold u = (u1, . . . , ud) and uj is the (k+1)th
largest observation of X1j , . . . , Xnj for j ∈ {1, . . . , d}.

An open problem related to Chapters 2 and 3 is hypothesis testing at the
boundary of the parameter space. When estimating a Brown–Resnick process,
a shape parameter close to 2 might indicate that the smooth Smith model
would suffice. For the max-linear model, a factor loading which is estimated
close to zero suggests that we do not need to include this factor in our model.
To test for these hypotheses we need a result similar to Corollary 2.2.5, but
which is also valid at the boundary of Θ.
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Chapter 4 is aimed at guiding the reader through the programs that were
written for Chapters 2 and 3. On the long term, the aim of this R package is
to contain a complete set of tools for distance-based estimation methods for
both multivariate and spatial extreme value analysis; more models or methods
might be added in the future.

Chapter 5 is a careful first attempt to the statistical modelling of mul-
tivariate extremes using multivariate generalized Pareto distributions. The
construction device that is proposed in Rootzén et al. (2016) allows for new
parametric models, which is important in the context of high-dimensional ex-
tremes because not so many models exist whose numerical implementation is
doable. In this chapter, the focus is on densities rather than on stable tail de-
pendence functions — models that do not have an analytical expression for the
stable tail dependence function might still have a relatively easy density: the
ordered components model proposed to model landslides is such an example.

In Chapter 5 we focused on censored likelihood estimation only. It follows
from expression (5.3.2) that one could use the nonparametric estimator of the
stable tail dependence function to obtain a nonparametric estimator of the
(standardized) generalized Pareto distribution H∗. This could in turn be a
stepping stone for semi-parametric estimation of H∗.

The subject of Chapter 6 deviates from the title of this thesis, focusing on
the modelling of dependent default in credit risk. Although the proposed max-
factor model seems to capture the shocks stemming from both global factors
and rating class-specific factors quite well, the computational burden is signi-
ficantly larger than for a linear model based on the Gaussian distribution. This
forms the main obstacle to the application of this model on a larger scale. A
possible extension of the model would make use of a richer dataset, taking into
account transition probabilities between rating classes or specific observable
factors.

This thesis only casually mentions the issues of serial dependence and sta-
tionarity, since these subjects could both constitute a book on its own. Whereas
we usually assumed that the univariate time series we use are independent and
identically distributed, in practice one often encounters either temporal depend-
ence (e.g., even a series of weekly negative log-returns on a stock can exhibit
short-term temporal dependence), seasonal variability (e.g., rainfall series that
follow another distribution in summer than in winter), or long-term trends
(e.g., an increase in temperature over the last decades due to climate change).
Temporal dependence in a stationary time series does not have an influence on
the consistency result of our proposed estimators, but the asymptotic variance
matrix, and thus the optimal weight matrix, would need to be adjusted. When
using censored likelihood estimation for the multivariate generalized Pareto
distribution, our threshold exceedances are not necessarily independent when
our series exhibit temporal dependence, and some declustering might be needed.
However, a cluster is already hard to define in the univariate setting, let alone
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in the multivariate setting, so we have chosen not to focus on this issue.
Seasonal variability can be dealt with by splitting up our data in blocks that

are stationary: for instance, in Chapter 2, we studied only the summer wind
speed maxima. Including a long-term trend, for instance in the mean value of
our process of interest, although straightforward for likelihood methods, is less
obvious for our estimators.

Another topic this thesis has not touched upon is asymptotic independence.
When the data we consider are asymptotically independent, the stable tail
dependence function is equal to its upper bound, i.e., `(x) = x1 + · · ·+ xd. In
that case, the theory described in this thesis is of no use and alternative methods
to model the joint tail need to be used. In the multivariate setting, this is a
subject which has been developed since several decades (Ledford and Tawn,
1996, 1997; Heffernan and Tawn, 2004; Ramos and Ledford, 2009; Wadsworth
et al., 2013, 2016). In the spatial setting, models incorporating asymptotic
independence have started to be developed as well (Wadsworth and Tawn,
2012; Bacro et al., 2016; Opitz, 2016).
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