User menu

Performance-based robotic assistance during rhythmic arm exercises

Bibliographic reference Leconte, Patricia ; Ronsse, Renaud. Performance-based robotic assistance during rhythmic arm exercises. In: Journal of NeuroEngineering and Rehabilitation, Vol. 13, no.1, p. 82 (2016)
Permanent URL
  1. Hogan Neville, Sternad Dagmar, Dynamic primitives of motor behavior, 10.1007/s00422-012-0527-1
  2. Hogan Neville, Sternad Dagmar, Dynamic primitives in the control of locomotion, 10.3389/fncom.2013.00071
  3. Hogan Neville, Sternad Dagmar, On rhythmic and discrete movements: reflections, definitions and implications for motor control, 10.1007/s00221-007-0899-y
  4. Goto Yumeno, Jono Yasutomo, Hatanaka Ryota, Nomura Yoshifumi, Tani Keisuke, Chujo Yuta, Hiraoka Koichi, Different corticospinal control between discrete and rhythmic movement of the ankle, 10.3389/fnhum.2014.00578
  5. Sternad Dagmar, Marino Hamal, Charles Steven K., Duarte Marcos, Dipietro Laura, Hogan Neville, Transitions between discrete and rhythmic primitives in a unimanual task, 10.3389/fncom.2013.00090
  6. Guiard Yves, On Fitts's and Hooke's laws: Simple harmonic movement in upper-limb cyclical aiming, 10.1016/0001-6918(93)90009-g
  7. Schaal Stefan, Sternad Dagmar, Osu Rieko, Kawato Mitsuo, Rhythmic arm movement is not discrete, 10.1038/nn1322
  8. Sternad Dagmar, Dean William J., Rhythmic and discrete elements in multi-joint coordination, 10.1016/s0006-8993(03)03292-x
  9. de Rugy Aymar, Sternad Dagmar, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements, 10.1016/j.brainres.2003.09.031
  10. van Mourik Anke M., Beek Peter J., Discrete and cyclical movements: unified dynamics or separate control?, 10.1016/j.actpsy.2004.06.001
  11. Buchanan John J., Park Jin-Hoon, Shea Charles H., Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action, 10.1007/s00221-006-0589-1
  12. Smits-Engelsman B.C.M., Swinnen S.P., Duysens J., The advantage of cyclic over discrete movements remains evident following changes in load and amplitude, 10.1016/j.neulet.2005.11.001
  13. Ikegami T., Hirashima M., Taga G., Nozaki D., Asymmetric Transfer of Visuomotor Learning between Discrete and Rhythmic Movements, 10.1523/jneurosci.3066-09.2010
  14. Howard I. S., Ingram J. N., Wolpert D. M., Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning, 10.1152/jn.00780.2010
  15. Gowland Carolyn, deBruin Hubert, Basmajian John V, Plews Nancy, Burcea Ion, Agonist and Antagonist Activity During Voluntary Upper-Limb Movement in Patients with Stroke, 10.1093/ptj/72.9.624
  16. Simkins Matt, Burleigh Jacobs Anne, Rosen Jacob, Rhythmic affects on stroke-induced joint synergies across a range of speeds, 10.1007/s00221-013-3613-2
  17. Krebs HI, Hogan N, Volpe BT, Aisen ML, Diels C. Overview of clinical trials with mit-manus: a robot-aided neuro-rehabilitation facility. Technol Health Care. 1999; 7(6):419–23.
  18. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002; 22(18):8297–304.
  19. Dipietro Laura, Krebs Hermano I., Fasoli Susan E., Volpe Bruce T., Hogan Neville, Submovement changes characterize generalization of motor recovery after stroke, 10.1016/j.cortex.2008.02.008
  20. Hogan Neville, Sternad Dagmar, Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests, 10.3200/35-09-004-rc
  21. Gilliaux Maxime, Renders Anne, Dispa Delphine, Holvoet Dominique, Sapin Julien, Dehez Bruno, Detrembleur Christine, Lejeune Thierry M., Stoquart Gaëtan, Upper Limb Robot-Assisted Therapy in Cerebral Palsy : A Single-Blind Randomized Controlled Trial, 10.1177/1545968314541172
  22. Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Stoquart G, A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: A preliminary prospective cohort study, 10.2340/16501977-0926
  23. Zehr E. Paul, Duysens Jacques, Regulation of Arm and Leg Movement during Human Locomotion, 10.1177/1073858404264680
  24. Leconte Patricia, Orban de Xivry Jean-Jacques, Stoquart Gaëtan, Lejeune Thierry, Ronsse Renaud, Rhythmic arm movements are less affected than discrete ones after a stroke, 10.1007/s00221-015-4543-y
  25. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004; 22(3-5):281–300.
  26. Van Peppen R PS, Kwakkel G, Wood-Dauphinee S, Hendriks H JM, Van der Wees Ph J, Dekker J, The impact of physical therapy on functional outcomes after stroke: what's the evidence?, 10.1191/0269215504cr843oa
  27. Kwakkel Gert, Kollen Boudewijn J., Krebs Hermano I., Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review, 10.1177/1545968307305457
  28. Hesse S., Werner C., Pohl M., Rueckriem S., Mehrholz J., Lingnau M.L., Computerized Arm Training Improves the Motor Control of the Severely Affected Arm After Stroke: A Single-Blinded Randomized Trial in Two Centers, 10.1161/01.str.0000177865.37334.ce
  29. Bütefisch Cathrin, Hummelsheim Horst, Denzler Petra, Mauritz Karl-Heinz, Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand, 10.1016/0022-510x(95)00003-k
  30. Diserens K., Perret N., Chatelain S., Bashir S., Ruegg D., Vuadens P., Vingerhoets F., The effect of repetitive arm cycling on post stroke spasticity and motor control, 10.1016/j.jns.2006.10.021
  31. Luft Andreas R., McCombe-Waller Sandy, Whitall Jill, Forrester Larry W., Macko Richard, Sorkin John D., Schulz Jörg B., Goldberg Andrew P., Hanley Daniel F., Repetitive Bilateral Arm Training and Motor Cortex Activation in Chronic Stroke : A Randomized Controlled Trial, 10.1001/jama.292.15.1853
  32. Whitall J., Waller S. M., Silver K. H. C., Macko R. F., Repetitive Bilateral Arm Training With Rhythmic Auditory Cueing Improves Motor Function in Chronic Hemiparetic Stroke, 10.1161/01.str.31.10.2390
  33. Whitall Jill, Waller Sandy McCombe, Sorkin John D., Forrester Larry W., Macko Richard F., Hanley Daniel F., Goldberg Andrew P., Luft Andreas, Bilateral and Unilateral Arm Training Improve Motor Function Through Differing Neuroplastic Mechanisms : A Single-Blinded Randomized Controlled Trial, 10.1177/1545968310380685
  34. Stinear James W., Byblow Winston D., Rhythmic Bilateral Movement Training Modulates Corticomotor Excitability and Enhances Upper Limb Motricity Poststroke: A Pilot Study : , 10.1097/00004691-200403000-00008
  35. Marchal-Crespo Laura, Reinkensmeyer David J, Review of control strategies for robotic movement training after neurologic injury, 10.1186/1743-0003-6-20
  36. Wolbrecht E.T., Chan V., Reinkensmeyer D.J., Bobrow J.E., Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation, 10.1109/tnsre.2008.918389
  37. Volpe Bruce T., Huerta Patricio T., Zipse Johanna L., Rykman Avrielle, Edwards Dylan, Dipietro Laura, Hogan Neville, Krebs Hermano I., Robotic Devices as Therapeutic and Diagnostic Tools for Stroke Recovery, 10.1001/archneurol.2009.182
  38. Kwakkel G., Wagenaar R. C., Koelman T. W., Lankhorst G. J., Koetsier J. C., Effects of Intensity of Rehabilitation After Stroke : A Research Synthesis, 10.1161/01.str.28.8.1550
  39. Burgar CG, Lum PS, Shor PC, Van der Loos HM. Development of robots for rehabilitation therapy: the palo alto va/stanford experience. J Rehabil Res Dev. 2000; 37(6):663–74.
  40. Lum Peter S., Burgar Charles G., Shor Peggy C., Majmundar Matra, Van der Loos Machiel, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke, 10.1053/apmr.2001.33101
  41. Johnson M.J., VanderLoos H.F.M., Burgar C.G., Shor P., Leifer L.J., Experimental Results Using Force-Feedback Cueing in Robot-Assisted Stroke Therapy, 10.1109/tnsre.2005.850428
  42. Lum Peter S., Burgar Charles G., Loos Machiel Van der, Shor Peggy C., Majmundar Matra, Yap Ruth, MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study, 10.1682/jrrd.2005.02.0044
  43. Reinkensmeyer David J., Wolbrecht Eric T., Chan Vicky, Chou Cathy, Cramer Steven C., Bobrow James E., Comparison of Three-Dimensional, Assist-as-Needed Robotic Arm/Hand Movement Training Provided with Pneu-WREX to Conventional Tabletop Therapy After Chronic Stroke : , 10.1097/phm.0b013e31826bce79
  44. Barbeau Hugues, Visintin Martha, Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated., 10.1016/s0003-9993(03)00361-7
  45. Krebs H.I., Palazzolo J.J., Dipietro L., Ferraro M., Krol J., Rannekleiv K., Volpe B.T., Hogan N., 10.1023/a:1024494031121
  46. Lum S.P., Lehman S.L., Reinkensmeyer D.J., The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients, 10.1109/86.392371
  47. Guidali Marco, Duschau-Wicke Alexander, Broggi Simon, Klamroth-Marganska Verena, Nef Tobias, Riener Robert, A robotic system to train activities of daily living in a virtual environment, 10.1007/s11517-011-0809-0
  48. Gijbels Domien, Lamers Ilse, Kerkhofs Lore, Alders Geert, Knippenberg Els, Feys Peter, The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study, 10.1186/1743-0003-8-5
  49. Frisoli Antonio, Procopio Caterina, Chisari Carmelo, Creatini Ilaria, Bonfiglio Luca, Bergamasco Massimo, Rossi Bruno, Carboncini Maria, Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke, 10.1186/1743-0003-9-36
  50. Rosati G., Gallina P., Masiero S., Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation, 10.1109/tnsre.2007.908560
  51. Kahn L, Rymer W, Reinkensmeyer D. Adaptive assistance for guided force training in chronic stroke. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004 (IEMBS’04). San Francisco: IEEE: 2004. p. 2722–5.
  52. Righetti Ludovic, Buchli Jonas, Ijspeert Auke Jan, Dynamic Hebbian learning in adaptive frequency oscillators, 10.1016/j.physd.2006.02.009
  53. Ronsse Renaud, Vitiello Nicola, Lenzi Tommaso, van den Kieboom Jesse, Carrozza Maria Chiara, Ijspeert Auke Jan, Human–Robot Synchrony: Flexible Assistance Using Adaptive Oscillators, 10.1109/tbme.2010.2089629
  54. Ronsse Renaud, Lenzi Tommaso, Vitiello Nicola, Koopman Bram, van Asseldonk Edwin, De Rossi Stefano Marco Maria, van den Kieboom Jesse, van der Kooij Herman, Carrozza Maria Chiara, Ijspeert Auke Jan, Oscillator-based assistance of cyclical movements: model-based and model-free approaches, 10.1007/s11517-011-0816-1
  55. Everarts C, Vallery H, Bolliger M, Ronsse R. Adaptive position anticipation in a support robot for overground gait training enhances transparency. In: 2013 IEEE International Conference On Rehabilitation Robotics (ICORR). Seattle: IEEE: 2013. p. 1–6.
  56. Ronsse Renaud, De Rossi Stefano Marco Maria, Vitiello Nicola, Lenzi Tommaso, Carrozza Maria Chiara, Ijspeert Auke Jan, Real-Time Estimate of Velocity and Acceleration of Quasi-Periodic Signals Using Adaptive Oscillators, 10.1109/tro.2013.2240173
  57. Rinderknecht MD, Delaloye FA, Crespi A, Ronsse R, Ijspeert AJ. Assistance using adaptive s: Robustness to errors in the identification of the limb parameters. In: 2011 IEEE International Conference On Rehabilitation Robotics (ICORR). Zurich: IEEE: 2011. p. 1–6.
  58. Ronsse R, Vitiello N, Lenzi T, Van Den Kieboom J, Carrozza MC, Ijspeert AJ. Adaptive oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. In: 3rd IEEE RAS and EMBS International Conference On Biomedical Robotics and Biomechatronics (BioRob), 2010. Tokyo: IEEE: 2010. p. 668–74.
  59. Balasubramanian S., Melendez-Calderon A., Burdet E., A Robust and Sensitive Metric for Quantifying Movement Smoothness, 10.1109/tbme.2011.2179545
  60. Balasubramanian Sivakumar, Melendez-Calderon Alejandro, Roby-Brami Agnes, Burdet Etienne, On the analysis of movement smoothness, 10.1186/s12984-015-0090-9
  61. Rohrer Brandon, Hogan Neville, Avoiding Spurious Submovement Decompositions II: A Scattershot Algorithm, 10.1007/s00422-006-0055-y
  62. Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Selves C, Stoquart G, Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients, 10.2340/16501977-1245
  63. Vallery H, Ekkelenkamp R, Van Der Kooij H, Buss M. Passive and accurate torque control of series elastic actuators. In: IEEE/RSJ International Conference On Intelligent Robots and Systems, 2007. IROS 2007. San Diego: IEEE: 2007. p. 3534–538.
  64. Vallery Heike, Veneman Jan, van Asseldonk Edwin, Ekkelenkamp Ralf, Buss Martin, van Der Kooij Herman, Compliant actuation of rehabilitation robots, 10.1109/mra.2008.927689
  65. Vallery H, Duschau-Wicke A, Riener R. Generalized elasticities improve patient-cooperative control of rehabilitation robots. In: IEEE International Conference On Rehabilitation Robotics, 2009. ICORR 2009. Kyoto: IEEE: 2009. p. 535–41.
  66. Vallery H, Duschau-Wicke A, Riener R. Optimized passive dynamics improve transparency of haptic devices. In: IEEE International Conference On Robotics and Automation, 2009. ICRA’09. Kobe: IEEE: 2009. p. 301–6.
  67. Sternad Dagmar, Dean William J., Schaal Stefan, Interaction of rhythmic and discrete pattern generators in single-joint movements, 10.1016/s0167-9457(00)00028-2