User menu

An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications

Bibliographic reference Bogaert, Patrick ; Waldner, François ; Defourny, Pierre. An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications. In: Stochastic Environmental Research and Risk Assessment, , p. 1-16 (31 August 2016)
Permanent URL
  1. Atkinson P, Foody G (2002) Uncertainty in remote sensing and GIS. Wiley, Chichester, pp 1–18
  2. Brown K. M., Foody G. M., Atkinson P. M., Estimating per‐pixel thematic uncertainty in remote sensing classifications, 10.1080/01431160802290568
  3. Cockx Kasper, Van de Voorde Tim, Canters Frank, Quantifying uncertainty in remote sensing-based urban land-use mapping, 10.1016/j.jag.2014.03.016
  4. Comber Alexis, Fisher Peter, Brunsdon Chris, Khmag Abdulhakim, Spatial analysis of remote sensing image classification accuracy, 10.1016/j.rse.2012.09.005
  5. Cripps Edward, O’Hagan Anthony, Quaife Tristan, Quantifying uncertainty in remotely sensed land cover maps, 10.1007/s00477-012-0660-3
  6. Crosetto Michele, Tarantola Stefano, Uncertainty and sensitivity analysis: tools for GIS-based model implementation, 10.1080/13658810110053125
  7. Dehghan Hamid, Ghassemian Hassan, Measurement of uncertainty by the entropy: application to the classification of MSS data, 10.1080/01431160600647225
  8. Dronova Iryna, Gong Peng, Wang Lin, Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China, 10.1016/j.rse.2011.07.006
  9. Eastman JR (2006) Idrisi andes. Guide to GIS and image processing. Clark University, Worcester, pp 87–131
  10. Feng Y, Liu Y, Batty M (2015) Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China. Stoch Environ Res Risk Assess 30:1–14
  11. Foody G. M., Local characterization of thematic classification accuracy through spatially constrained confusion matrices, 10.1080/01431160512331326521
  12. Foody G. M., RVM‐based multi‐class classification of remotely sensed data, 10.1080/01431160701822115
  13. Foody GM, Campbell N, Trodd N, Wood T (1992) Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogr Eng Remote Sens 58(9):1335–1341
  14. Ge Yong, Li Sanping, Lakhan V. Chris, Lucieer Arko, Exploring uncertainty in remotely sensed data with parallel coordinate plots, 10.1016/j.jag.2009.08.004
  15. Giacco Ferdinando, Thiel Christian, Pugliese Luca, Scarpetta Silvia, Marinaro Maria, Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs, 10.1109/tgrs.2010.2047863
  16. Gislason Pall Oskar, Benediktsson Jon Atli, Sveinsson Johannes R., Random Forests for land cover classification, 10.1016/j.patrec.2005.08.011
  17. Glasziou Paul, Hilden Jørgen, Test Selection Measures, 10.1177/0272989x8900900208
  18. Gonçalves Luisa M.S., Fonte Cidália C., Júlio Eduardo N.B.S., Caetano Mario, A method to incorporate uncertainty in the classification of remote sensing images, 10.1080/01431160903130929
  19. HAGOLLE O, DEDIEU G, MOUGENOT B, DEBAECKER V, DUCHEMIN B, MEYGRET A, Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images, 10.1016/j.rse.2007.08.016
  20. Hagolle Olivier, Huc Mireille, Pascual David, Dedieu Gerard, A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENS and Sentinel-2 Images, 10.3390/rs70302668
  21. Kullback S., Leibler R. A., On Information and Sufficiency, 10.1214/aoms/1177729694
  22. Liu R, Chen Y, Wu J, Gao L, Barrett D, Xu T, Li L, Huang C, Yu J (2015) Assessing spatial likelihood of flooding hazard using Naive Bayes and GIS: a case study in Bowen Basin, Australia. Stoch Environ Res Risk Assess 30:1–16
  23. Liu Weiguo, Gopal Sucharita, Woodcock Curtis E., Uncertainty and Confidence in Land Cover Classification Using a Hybrid Classifier Approach, 10.14358/pers.70.8.963
  24. Loosvelt Lien, Peters Jan, Skriver Henning, De Baets Bernard, Verhoest Niko E. C., Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm, 10.1109/tgrs.2012.2189012
  25. Loosvelt Lien, Peters Jan, Skriver Henning, Lievens Hans, Van Coillie Frieke M.B., De Baets Bernard, Verhoest Niko E.C., Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification, 10.1016/j.jag.2012.05.011
  26. Lunetta RS, Congalton RG, Fenstermaker L, Jense J, McGwire K, Tinney L (1991) Remote sensing and geographic information system data integration: error sources and reseach issues. Photogr Eng Remote Sens 57(6):677–687
  27. Löw Fabian, Conrad Christopher, Michel Ulrich, Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data, 10.1016/j.isprsjprs.2015.07.001
  28. Löw Fabian, Knöfel Patrick, Conrad Christopher, Analysis of uncertainty in multi-temporal object-based classification, 10.1016/j.isprsjprs.2015.03.004
  29. Löw F., Michel U., Dech S., Conrad C., Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines, 10.1016/j.isprsjprs.2013.08.007
  30. Maselli Fabio, Conese Claudio, Petkov Ljiljana, Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications, 10.1016/0924-2716(94)90062-0
  31. McIver D.K., Friedl M.A., Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods, 10.1109/36.951086
  32. Mitchell Scott W., Remmel Tarmo K., Csillag Ferenc, Wulder Michael A., Distance to second cluster as a measure of classification confidence, 10.1016/j.rse.2007.12.006
  33. Mitchell Jessica, Shrestha Rupesh, Moore-Ellison Carol, Glenn Nancy, Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts, 10.3390/rs5104857
  34. Pal N.R., Bezdek J.C., Measuring fuzzy uncertainty, 10.1109/91.277960
  35. Polikar R., Ensemble based systems in decision making, 10.1109/mcas.2006.1688199
  36. Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogr Eng Remote Sens 66(8):1011–1016
  37. Radoux Julien, Chomé Guillaume, Jacques Damien, Waldner François, Bellemans Nicolas, Matton Nicolas, Lamarche Céline, d’Andrimont Raphaël, Defourny Pierre, Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection, 10.3390/rs8060488
  38. Renier Cécile, Waldner François, Jacques Damien, Babah Ebbe Mohamed, Cressman Keith, Defourny Pierre, A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS, 10.3390/rs70607545
  39. Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M., Rigol-Sanchez J.P., An assessment of the effectiveness of a random forest classifier for land-cover classification, 10.1016/j.isprsjprs.2011.11.002
  40. Stehlí KM, Sivasundaram S (2012) Decompositions of information divergences: recent development, open problems and applications. In: AIP conference proceedings, vol 1493. American Institute of Physics, p 972
  41. Stehman Stephen V., Selecting and interpreting measures of thematic classification accuracy, 10.1016/s0034-4257(97)00083-7
  42. Story M, Congalton RG (1986) Accuracy assessment-a user $$\backslash$$ \ ’s perspective. Photogr Eng Remote Sens 52(3):397–399
  43. Strahler AH, Boschetti L, Foody GM, Friedl MA, Hansen MC, Herold M, Mayaux P, Morisette JT, Stehman SV, Woodcock CE (2006) Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps. European Communities, Luxembourg 51
  44. Waldner François, Canto Guadalupe Sepulcre, Defourny Pierre, Automated annual cropland mapping using knowledge-based temporal features, 10.1016/j.isprsjprs.2015.09.013
  45. Waldner François, Lambert Marie-Julie, Li Wenjuan, Weiss Marie, Demarez Valérie, Morin David, Marais-Sicre Claire, Hagolle Olivier, Baret Frédéric, Defourny Pierre, Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series, 10.3390/rs70810400
  46. Waldner François, Ebbe Mohamed, Cressman Keith, Defourny Pierre, Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment, 10.3390/ijgi4042379
  47. Van der Wel Frans J.M, Van der Gaag Linda C, Gorte Ben G.H, Visual exploration of uncertainty in remote-sensing classification, 10.1016/s0098-3004(97)00120-9
  48. Zhang J, Sun J (2002) The survey of accuracy analysis of remote sensing and GIS. Int Arch Photogr Remote Sens Spat Inf Sci 34(2):581–584