User menu

Sufficient optimality conditions hold for almost all nonlinear semidefinite programs

Bibliographic reference Dorsch, Dominik ; Gomez, Walter ; Shikhman, Vladimir. Sufficient optimality conditions hold for almost all nonlinear semidefinite programs. In: Mathematical Programming, Vol. 158, no. 1, p. 77-97 (2016)
Permanent URL http://hdl.handle.net/2078.1/175695
  1. Achtziger Wolfgang, Kočvara Michal, Structural Topology Optimization with Eigenvalues, 10.1137/060651446
  2. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77(2, Ser. B), 111–128 (1997)
  3. Allende, G.B., Still, G.: Solving bilevel programs with the KKT-approach. Math. Program. 138(1–2), 309–332 (2012)
  4. Anand Christopher Kumar, Sotirov Renata, Terlaky Tamás, Zheng Zhuo, Magnetic resonance tissue quantification using optimal bSSFP pulse-sequence design, 10.1007/s11081-007-9009-z
  5. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166. Springer, Berlin (2012)
  6. Bolte Jérôme, Daniilidis Aris, Lewis Adrian S., Generic Optimality Conditions for Semialgebraic Convex Programs, 10.1287/moor.1110.0481
  7. Bonnans J. Frédéric, Shapiro Alexander, Perturbation Analysis of Optimization Problems, ISBN:9781461271291, 10.1007/978-1-4612-1394-9
  8. Vandenberghe Lieven, Boyd Stephen, Semidefinite Programming, 10.1137/1038003
  9. de Klerk, E.: Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications. Applied Optimization, vol. 65. Kluwer, Dordrecht (2002)
  10. Klerk Etienne de, Exploiting special structure in semidefinite programming: A survey of theory and applications, 10.1016/j.ejor.2009.01.025
  11. Diehl Moritz, Jarre Florian, Vogelbusch Christoph H., Loss of Superlinear Convergence for an SQP-Type Method with Conic Constraints, 10.1137/050625977
  12. Dorsch, D.: Stratified Optimality Theory: A Tool for the Theoretical Justification of Assumptions in Finite-Dimensional Optimization. Berichte aus der Mathematik. Shaker Verlag, Aachen (2014)
  13. Dorsch Dominik, Shikhman Vladimir, Stein Oliver, Mathematical programs with vanishing constraints: critical point theory, 10.1007/s10898-011-9805-z
  14. Forsgren Anders, Optimality conditions for nonconvex semidefinite programming, 10.1007/pl00011370
  15. Freund Roland W., Jarre Florian, Vogelbusch Christoph H., Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling, 10.1007/s10107-006-0028-x
  16. Haslinger J., Kočvara M., Leugering G., Stingl M., Multidisciplinary Free Material Optimization, 10.1137/090774446
  17. Hirsch Morris W., Differential Topology, ISBN:9781468494518, 10.1007/978-1-4684-9449-5
  18. Jargalsaikhan, B.: Linear conic programming: genericity and stability, University of Groningen, Groningen (2015)
  19. Jarre Florian, Elementary Optimality Conditions for Nonlinear SDPs, Handbook on Semidefinite, Conic and Polynomial Optimization (2012) ISBN:9781461407683 p.455-470, 10.1007/978-1-4614-0769-0_16
  20. Jongen, HTh, Jonker, P., Triesch, E.: Optimization Theory. Kluwer, Boston (2004)
  21. Jongen, HTh, Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht (2000)
  22. Jongen H. Th., Shikhman V., Bilevel optimization: on the structure of the feasible set, 10.1007/s10107-012-0551-x
  23. Kanno Y., Takewaki I., Sequential Semidefinite Program for Maximum Robustness Design of Structures under Load Uncertainty, 10.1007/s10957-006-9102-z
  24. Kočvara Michal, Stingl Michael, Solving nonconvex SDP problems of structural optimization with stability control, 10.1080/10556780410001682844
  25. Kočvara Michal, Stingl Michael, Free material optimization for stress constraints, 10.1007/s00158-007-0095-5
  26. Kočvara Michal, Stingl Michael, Solving stress constrained problems in topology and material optimization, 10.1007/s00158-012-0762-z
  27. Kočvara Michal, Stingl Michael, Zowe Jochem, Free material optimization: recent progress†, 10.1080/02331930701778908
  28. Nemirovskii, A., Nesterov, Y.: Interior-point polynomial algorithms in convex programming. SIAM Stud. Appl. Math. 13, SIAM Philadelphia, (1994)
  29. Robinson Stephen M., First Order Conditions for General Nonlinear Optimization, 10.1137/0130053
  30. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(2, Ser. B), 301–320 (1997)
  31. Stingl, M., Kočvara, M., Leugering, G.: Free material optimization with fundamental eigenfrequency constraints. SIAM J. Optim. 20(1), 525–547 (2009)
  32. Stingl M., Kočvara M., Leugering G., A Sequential Convex Semidefinite Programming Algorithm with an Application to Multiple-Load Free Material Optimization, 10.1137/070711281
  33. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)
  34. Handbook of Semidefinite Programming, ISBN:9781461369707, 10.1007/978-1-4615-4381-7