User menu

Sulfur denitrosylation by an engineered Trx-like DsbG enzyme identifies nucleophilic cysteine hydrogen bonds as key functional determinant

Bibliographic reference Lafaye, Celine ; Van Molle, Inge ; Tamu Dufe, Veronica ; Wahni, Khadija ; Boudier, Ariane ; et. al. Sulfur denitrosylation by an engineered Trx-like DsbG enzyme identifies nucleophilic cysteine hydrogen bonds as key functional determinant. In: Journal of Biological Chemistry, Vol. 291, no. 29, p. 15020-8 (2016)
Permanent URL http://hdl.handle.net/2078.1/175445
  1. Benhar M., Forrester M. T., Hess D. T., Stamler J. S., Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins, 10.1126/science.1158265
  2. Denoncin Katleen, Vertommen Didier, Arts Isabelle S., Goemans Camille V., Rahuel-Clermont Sophie, Messens Joris, Collet Jean-François, A New Role forEscherichia coliDsbC Protein in Protection against Oxidative Stress, 10.1074/jbc.m114.554055
  3. Rietsch A., Belin D., Martin N., Beckwith J., An in vivo pathway for disulfide bond isomerization in Escherichia coli, 10.1073/pnas.93.23.13048
  4. Shevchik, EMBO J, 13, 2007 (1994)
  5. Hiniker A., Ren G., Heras B., Zheng Y., Laurinec S., Jobson R. W., Stuckey J. A., Martin J. L., Bardwell J. C. A., Laboratory evolution of one disulfide isomerase to resemble another, 10.1073/pnas.0704692104
  6. Ren Guoping, Stephan Daniel, Xu Zhaohui, Zheng Ying, Tang Danming, Harrison Rosemary S., Kurz Mareike, Jarrott Russell, Shouldice Stephen R., Hiniker Annie, Martin Jennifer L., Heras Begoña, Bardwell James C. A., Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue, 10.1074/jbc.m809509200
  7. Krause, J. Biol. Chem, 266, 9494 (1991)
  8. Heras Begoña, Edeling Melissa A., Byriel Karl A., Jones Alun, Raina Satish, Martin Jennifer L., Dehydration Converts DsbG Crystal Diffraction from Low to High Resolution, 10.1016/s0969-2126(03)00005-4
  9. Heras B., Edeling M. A., Schirra H. J., Raina S., Martin J. L., Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide, 10.1073/pnas.0402769101
  10. Lewin Allison, Crow Allister, Hodson Christopher T. C., Hederstedt Lars, Le Brun Nick E., Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA, 10.1042/bj20080356
  11. Gould Neal, Doulias Paschalis-Thomas, Tenopoulou Margarita, Raju Karthik, Ischiropoulos Harry, Regulation of Protein Function and Signaling by Reversible CysteineS-Nitrosylation, 10.1074/jbc.r113.460261
  12. Nakamura Tomohiro, Lipton Stuart A., Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases, 10.1016/j.tips.2015.10.002
  13. Benhar, Nat. Rev. Mol. Cell Biol, 10, 721 (2009)
  14. Quan Shu, Schneider Irmhild, Pan Jonathan, Von Hacht Annekathrin, Bardwell James C. A., The CXXC Motif Is More than a Redox Rheostat, 10.1074/jbc.m705291200
  15. Mössner Ekkehard, Huber-Wunderlich Martina, Glockshuber Rudi, Characterization ofEscherichia colithioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases, 10.1002/pro.5560070519
  16. Huber-Wunderlich Martina, Glockshuber Rudi, A single dipeptide sequence modulates the redox properties of a whole enzyme family, 10.1016/s1359-0278(98)00024-8
  17. Roos Goedele, Garcia-Pino Abel, Van belle Karolien, Brosens Elke, Wahni Khadija, Vandenbussche Guy, Wyns Lode, Loris Remy, Messens Joris, The Conserved Active Site Proline Determines the Reducing Power of Staphylococcus aureus Thioredoxin, 10.1016/j.jmb.2007.02.045
  18. Roos Goedele, Foloppe Nicolas, Messens Joris, Understanding the pKaof Redox Cysteines: The Key Role of Hydrogen Bonding, 10.1089/ars.2012.4521
  19. Pader I., Sengupta R., Cebula M., Xu J., Lundberg J. O., Holmgren A., Johansson K., Arner E. S. J., Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase, 10.1073/pnas.1317320111
  20. Zhang Yanhong, Hogg Neil, S-Nitrosothiols: cellular formation and transport, 10.1016/j.freeradbiomed.2004.12.016
  21. Cook John A., Kim Sungmee Y., Teague Diane, Krishna Murali C., Pacelli Roberto, Mitchell James B., Vodovotz Yoram, Nims Raymond W., Christodoulou Danae, Miles Allen M., Grisham Matthew B., Wink David A., Convenient Colorimetric and Fluorometric Assays for S-Nitrosothiols, 10.1006/abio.1996.0268
  22. Moore Kevin P, Mani Ali R, Measurement of protein nitration and S-nitrosothiol formation in biology and medicine, Methods in Enzymology (2002) ISBN:9780121822620 p.256-268, 10.1016/s0076-6879(02)59190-4
  23. Seth D., Hausladen A., Wang Y.-J., Stamler J. S., Endogenous Protein S-Nitrosylation in E. coli: Regulation by OxyR, 10.1126/science.1215643
  24. Saville B., A scheme for the colorimetric determination of microgram amounts of thiols, 10.1039/an9588300670
  25. Jakob Ursula, Muse Wilson, Eser Markus, Bardwell James C.A, Chaperone Activity with a Redox Switch, 10.1016/s0092-8674(00)80547-4
  26. Zander Thomas, Phadke Nikhil D., Bardwell James C.A., [5] Disulfide bond catalysts in Escherichia coli, Methods in Enzymology (1998) ISBN:9780121821913 p.59-74, 10.1016/s0076-6879(98)90007-6
  27. Bessette Paul H., Cotto José J., Gilbert Hiram F., Georgiou George, In Vivoandin VitroFunction of theEscherichia coliPeriplasmic Cysteine Oxidoreductase DsbG, 10.1074/jbc.274.12.7784
  28. Inaba K., Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade, 10.1093/emboj/21.11.2646
  29. Messens Joris, Molle Inge Van, Vanhaesebrouck Peter, Limbourg Maya, Belle Karolien Van, Wahni Khadija, Martins José C, Loris Remy, Wyns Lode, How Thioredoxin can Reduce a Buried Disulphide Bond, 10.1016/j.jmb.2004.04.016
  30. Nelson Jeffrey W., Creighton Thomas E., Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, 10.1021/bi00185a039
  31. Kabsch Wolfgang, XDS, 10.1107/s0907444909047337
  32. McCoy Airlie J., Grosse-Kunstleve Ralf W., Adams Paul D., Winn Martyn D., Storoni Laurent C., Read Randy J., Phasercrystallographic software, 10.1107/s0021889807021206
  33. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, 10.1107/s0907444994003112
  34. Emsley Paul, Cowtan Kevin, Coot: model-building tools for molecular graphics, 10.1107/s0907444904019158
  35. Winterbourn Christine C., Kettle Anthony J., Redox Reactions and Microbial Killing in the Neutrophil Phagosome, 10.1089/ars.2012.4827
  36. Murshudov G. N., Vagin A. A., Dodson E. J., Refinement of Macromolecular Structures by the Maximum-Likelihood Method, 10.1107/s0907444996012255
  37. Adams Paul D., Afonine Pavel V., Bunkóczi Gábor, Chen Vincent B., Davis Ian W., Echols Nathaniel, Headd Jeffrey J., Hung Li-Wei, Kapral Gary J., Grosse-Kunstleve Ralf W., McCoy Airlie J., Moriarty Nigel W., Oeffner Robert, Read Randy J., Richardson David C., Richardson Jane S., Terwilliger Thomas C., Zwart Peter H., PHENIX: a comprehensive Python-based system for macromolecular structure solution, 10.1107/s0907444909052925
  38. Afonine Pavel V., Grosse-Kunstleve Ralf W., Echols Nathaniel, Headd Jeffrey J., Moriarty Nigel W., Mustyakimov Marat, Terwilliger Thomas C., Urzhumtsev Alexandre, Zwart Peter H., Adams Paul D., Towards automated crystallographic structure refinement withphenix.refine, 10.1107/s0907444912001308
  39. Laver Jay R., McLean Samantha, Bowman Lesley A.H., Harrison Laura J., Read Robert C., Poole Robert K., Nitrosothiols in Bacterial Pathogens and Pathogenesis, 10.1089/ars.2012.4767
  40. Liu Limin, Hausladen Alfred, Zeng Ming, Que Loretta, Heitman Joseph, Stamler Jonathan S., A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans, 10.1038/35068596
  41. Collet Jean-Francois, Messens Joris, Structure, Function, and Mechanism of Thioredoxin Proteins, 10.1089/ars.2010.3114
  42. Nikitovic Dragana, Holmgren Arne, S-Nitrosoglutathione Is Cleaved by the Thioredoxin System with Liberation of Glutathione and Redox Regulating Nitric Oxide, 10.1074/jbc.271.32.19180
  43. Depuydt M., Leonard S. E., Vertommen D., Denoncin K., Morsomme P., Wahni K., Messens J., Carroll K. S., Collet J.-F., A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation, 10.1126/science.1179557