User menu

Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides

Bibliographic reference Mingeot-Leclercq, Marie-Paule ; Décout , Jean-Luc. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. In: MedChemComm, Vol. 7, no.4, p. 586-611 (2016)
Permanent URL
  1. Gadakh Bharat, Aerschot Arthur, Renaissance in Antibiotic Discovery: Some Novel Approaches for Finding Drugs to Treat Bad Bugs, 10.2174/0929867322666150319115828
  2. Oldfield Eric, Feng Xinxin, Resistance-resistant antibiotics, 10.1016/
  3. Epand Richard M., Epand Raquel F., Lipid domains in bacterial membranes and the action of antimicrobial agents, 10.1016/j.bbamem.2008.08.023
  4. Sohlenkamp Christian, Geiger Otto, Bacterial membrane lipids: diversity in structures and pathways, 10.1093/femsre/fuv008
  5. Pearson Ann, Flood Page Sarah R., Jorgenson Tyler L., Fischer Woodward W., Higgins Meytal B., Novel hopanoid cyclases from the environment, 10.1111/j.1462-2920.2007.01331.x
  6. Gessmann D., Chung Y. H., Danoff E. J., Plummer A. M., Sandlin C. W., Zaccai N. R., Fleming K. G., Outer membrane  -barrel protein folding is physically controlled by periplasmic lipid head groups and BamA, 10.1073/pnas.1322473111
  7. Qiao Shuai, Luo Qingshan, Zhao Yan, Zhang Xuejun Cai, Huang Yihua, Structural basis for lipopolysaccharide insertion in the bacterial outer membrane, 10.1038/nature13484
  8. Zgurskaya, Front. Microbiol., 6, 100 (2015)
  9. Doerrler William T., Lipid trafficking to the outer membrane of Gram-negative bacteria, 10.1111/j.1365-2958.2006.05130.x
  10. Percy Matthew G., Gründling Angelika, Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria, 10.1146/annurev-micro-091213-112949
  11. FISCHER Werner, Purification and fractionation of lipopolysaccharide from Gram-negative bacteria by hydrophobic interaction chromatography, 10.1111/j.1432-1033.1990.tb15665.x
  12. Schmidt Richard R., Pedersen Christian M., Qiao Yan, Zähringer Ulrich, Chemical synthesis of bacterial lipoteichoic acids: An insight on its biological significance, 10.1039/c0ob00794c
  13. Epand Richard M., Epand Raquel F., Bacterial membrane lipids in the action of antimicrobial agents, 10.1002/psc.1319
  14. Band Victor, Weiss David, Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria, 10.3390/antibiotics4010018
  15. Dare Kiley, Shepherd Jennifer, Roy Hervé, Seveau Stephanie, Ibba Michael, LysPGS formation inListeria monocytogeneshas broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance, 10.4161/viru.28359
  16. Mishra N. N., Bayer A. S., Correlation of Cell Membrane Lipid Profiles with Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus, 10.1128/aac.02182-12
  17. Zhang Yong-Mei, Rock Charles O., Thematic Review Series: Glycerolipids.Acyltransferases in bacterial glycerophospholipid synthesis, 10.1194/jlr.r800005-jlr200
  18. Kansy Manfred, Avdeef Alex, Fischer Holger, Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists, 10.1016/j.ddtec.2004.11.013
  19. Fujikawa Masaaki, Nakao Kazuya, Shimizu Ryo, Akamatsu Miki, QSAR study on permeability of hydrophobic compounds with artificial membranes, 10.1016/j.bmc.2007.03.040
  20. Oh Donghoon, Sun Jiadong, Nasrolahi Shirazi Amir, LaPlante Kerry L., Rowley David C., Parang Keykavous, Antibacterial Activities of Amphiphilic Cyclic Cell-Penetrating Peptides against Multidrug-Resistant Pathogens, 10.1021/mp5003027
  21. Pristovšek Primož, Kidrič Jurka, Solution Structure of Polymyxins B and E and Effect of Binding to Lipopolysaccharide: An NMR and Molecular Modeling Study‡, 10.1021/jm991031b
  22. Yu, Biomed. Res. Int., 2015, 679109 (2015)
  23. Velkov Tony, Thompson Philip E., Nation Roger L., Li Jian, Structure−Activity Relationships of Polymyxin Antibiotics, 10.1021/jm900999h
  24. Frecer V., Ho B., Ding J. L., De Novo Design of Potent Antimicrobial Peptides, 10.1128/aac.48.9.3349-3357.2004
  25. Koh Jun-Jie, Lin Huifen, Caroline Vonny, Chew Yu Siang, Pang Li Mei, Aung Thet Tun, Li Jianguo, Lakshminarayanan Rajamani, Tan Donald T. H., Verma Chandra, Tan Ai Ling, Beuerman Roger W., Liu Shouping, N-Lipidated Peptide Dimers: Effective Antibacterial Agents against Gram-Negative Pathogens through Lipopolysaccharide Permeabilization, 10.1021/acs.jmedchem.5b00628
  26. Weinstein Jay, Afonso Adriano, Moss Eugene, Miller George H., Selective chemical modifications of polymyxin B, 10.1016/s0960-894x(98)00612-x
  27. WITZKE N. M., HEDING H., Broad-spectrum derivatives of polymyxin B and colistin., 10.7164/antibiotics.29.1349
  28. Needham Brittany D., Trent M. Stephen, Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis, 10.1038/nrmicro3047
  29. Guo Lin, Lim Kheng B, Poduje Cristina M, Daniel Morad, Gunn John S, Hackett Murray, Miller Samuel I, Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides, 10.1016/s0092-8674(00)81750-x
  30. Hittle L. E., Jones J. W., Hajjar A. M., Ernst R. K., Preston A., Bordetella parapertussis PagP Mediates the Addition of Two Palmitates to the Lipopolysaccharide Lipid A, 10.1128/jb.02236-14
  31. Boll Joseph M., Tucker Ashley T., Klein Dustin R., Beltran Alexander M., Brodbelt Jennifer S., Davies Bryan W., Trent M. Stephen, Reinforcing Lipid A Acylation on the Cell Surface ofAcinetobacter baumanniiPromotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival, 10.1128/mbio.00478-15
  32. Velkov Tony, Soon Rachel L, Chong Pei L, Huang Johnny X, Cooper Matthew A, Azad Mohammad AK, Baker Mark A, Thompson Philip E, Roberts Kade, Nation Roger L, Clements Abigail, Strugnell Richard A, Li Jian, Molecular basis for the increased polymyxin susceptibility of Klebsiella pneumoniae strains with under-acylated lipid A, 10.1177/1753425912459092
  33. Kim J. H., Seo H., Han S. H., Lin J., Park M.-K., Sorensen U. B. S., Nahm M. H., Monoacyl Lipoteichoic Acid from Pneumococci Stimulates Human Cells but Not Mouse Cells, 10.1128/iai.73.2.834-840.2005
  34. Parsons Joshua B., Rock Charles O., Bacterial lipids: Metabolism and membrane homeostasis, 10.1016/j.plipres.2013.02.002
  35. Peleg Anton Y., Miyakis Spiros, Ward Doyle V., Earl Ashlee M., Rubio Aileen, Cameron David R., Pillai Satish, Moellering Robert C., Eliopoulos George M., Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus, 10.1371/journal.pone.0028316
  36. Davlieva M., Zhang W., Arias C. A., Shamoo Y., Biochemical Characterization of Cardiolipin Synthase Mutations Associated with Daptomycin Resistance in Enterococci, 10.1128/aac.01743-12
  37. Oku Y., Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol, 10.1099/mic.0.26706-0
  38. Peschel, J. Biolumin. Chemilumin., 274, 8405 (1999)
  39. Mishra N. N., Yang S.-J., Sawa A., Rubio A., Nast C. C., Yeaman M. R., Bayer A. S., Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus aureus, 10.1128/aac.01682-08
  40. Strahl H., Hamoen L. W., Membrane potential is important for bacterial cell division, 10.1073/pnas.1005485107
  41. Tran T. T., Panesso D., Mishra N. N., Mileykovskaya E., Guan Z., Munita J. M., Reyes J., Diaz L., Weinstock G. M., Murray B. E., Shamoo Y., Dowhan W., Bayer A. S., Arias C. A., Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids, 10.1128/mbio.00281-13
  42. Stefani Stefania, Campanile Floriana, Santagati Maria, Mezzatesta Maria Lina, Cafiso Viviana, Pacini Giovanni, Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence, 10.1016/j.ijantimicag.2015.05.008
  43. Malabarba Adriano, Nicas Thalia I., Thompson Richard C., Structural modifications of glycopeptide antibiotics, 10.1002/(sici)1098-1128(199701)17:1<69::aid-med3>;2-r
  44. Thaker Hitesh D., Cankaya Alper, Scott Richard W., Tew Gregory N., Role of Amphiphilicity in the Design of Synthetic Mimics of Antimicrobial Peptides with Gram-Negative Activity, 10.1021/ml300307b
  45. Vaara M., Fox J., Loidl G., Siikanen O., Apajalahti J., Hansen F., Frimodt-Moller N., Nagai J., Takano M., Vaara T., Novel Polymyxin Derivatives Carrying Only Three Positive Charges Are Effective Antibacterial Agents, 10.1128/aac.00405-08
  46. Mishra Nagendra N., Bayer Arnold S., Tran Truc T., Shamoo Yousif, Mileykovskaya Eugenia, Dowhan William, Guan Ziqiang, Arias Cesar A., Daptomycin Resistance in Enterococci Is Associated with Distinct Alterations of Cell Membrane Phospholipid Content, 10.1371/journal.pone.0043958
  47. Kato Akinori, Chen H. Deborah, Latifi Tammy, Groisman Eduardo A., Reciprocal Control between a Bacterium's Regulatory System and the Modification Status of Its Lipopolysaccharide, 10.1016/j.molcel.2012.07.017
  48. Wanty Christopher, Anandan Anandhi, Piek Susannah, Walshe James, Ganguly Jhuma, Carlson Russell W., Stubbs Keith A., Kahler Charlene M., Vrielink Alice, The Structure of the Neisserial Lipooligosaccharide Phosphoethanolamine Transferase A (LptA) Required for Resistance to Polymyxin, 10.1016/j.jmb.2013.06.029
  49. Olaitan Abiola O., Morand Serge, Rolain Jean-Marc, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria, 10.3389/fmicb.2014.00643
  50. Velkov Tony, Roberts Kade D, Nation Roger L, Thompson Philip E, Li Jian, Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics, 10.2217/fmb.13.39
  51. Ernst Christoph M., Staubitz Petra, Mishra Nagendra N., Yang Soo-Jin, Hornig Gabriele, Kalbacher Hubert, Bayer Arnold S., Kraus Dirk, Peschel Andreas, The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion, 10.1371/journal.ppat.1000660
  52. Ernst Christoph M., Peschel Andreas, Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids : MprF-mediated antimicrobial peptide resistance, 10.1111/j.1365-2958.2011.07576.x
  53. Slavetinsky C. J., Peschel A., Ernst C. M., Alanyl-Phosphatidylglycerol and Lysyl-Phosphatidylglycerol Are Translocated by the Same MprF Flippases and Have Similar Capacities To Protect against the Antibiotic Daptomycin in Staphylococcus aureus, 10.1128/aac.00370-12
  54. Mishra Nagendra N., Yang Soo-Jin, Chen Liang, Muller Claudette, Saleh-Mghir Azzam, Kuhn Sebastian, Peschel Andreas, Yeaman Michael R., Nast Cynthia C., Kreiswirth Barry N., Crémieux Anne-Claude, Bayer Arnold S., Emergence of Daptomycin Resistance in Daptomycin-Naïve Rabbits with Methicillin-Resistant Staphylococcus aureus Prosthetic Joint Infection Is Associated with Resistance to Host Defense Cationic Peptides and mprF Polymorphisms, 10.1371/journal.pone.0071151
  55. Andra, J. Biolumin. Chemilumin., 286, 18692 (2011)
  56. Wang X., Ribeiro A. A., Guan Z., Abraham S. N., Raetz C. R. H., Attenuated virulence of a Francisella mutant lacking the lipid A 4'-phosphatase, 10.1073/pnas.0611606104
  57. Kraus D., Kalbacher H., Buschmann J., Berger-Bachi B., Gotz F., Peschel A., Muropeptide Modification-Amidation of Peptidoglycan D-Glutamate Does Not Affect the Proinflammatory Activity of Staphylococcus aureus, 10.1128/iai.01576-06
  58. Zimmermann Louis, Bussière Antoine, Ouberai Myriam, Baussanne Isabelle, Jolivalt Claude, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Tuning the Antibacterial Activity of Amphiphilic Neamine Derivatives and Comparison to Paromamine Homologues, 10.1021/jm401148j
  59. Lipowsky Reinhard, Remodeling of membrane compartments: some consequences of membrane fluidity, 10.1515/hsz-2013-0244
  60. Mansilla María Cecilia, Banchio Claudia E., de Mendoza Diego, Signalling Pathways Controlling Fatty Acid Desaturation, Subcellular Biochemistry (2008) ISBN:9781402088308 p.71-99, 10.1007/978-1-4020-8831-5_3
  61. Schmerk C. L., Bernards M. A., Valvano M. A., Hopanoid Production Is Required for Low-pH Tolerance, Antimicrobial Resistance, and Motility in Burkholderia cenocepacia, 10.1128/jb.05979-11
  62. Saenz J. P., Sezgin E., Schwille P., Simons K., Functional convergence of hopanoids and sterols in membrane ordering, 10.1073/pnas.1212141109
  63. Boronat Albert, Rodríguez-Concepción Manuel, Terpenoid Biosynthesis in Prokaryotes, Biotechnology of Isoprenoids (2014) ISBN:9783319201061 p.3-18, 10.1007/10_2014_285
  64. Mendoza Diego de, Temperature Sensing by Membranes, 10.1146/annurev-micro-091313-103612
  65. Sautrey G., Zimmermann L., Deleu M., Delbar A., Souza Machado L., Jeannot K., Van Bambeke F., Buyck J. M., Decout J.-L., Mingeot-Leclercq M.-P., New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides, 10.1128/aac.02536-13
  66. Vadyvaloo V., Hastings J. W., van der Merwe M. J., Rautenbach M., Membranes of Class IIa Bacteriocin-Resistant Listeria monocytogenes Cells Contain Increased Levels of Desaturated and Short-Acyl-Chain Phosphatidylglycerols, 10.1128/aem.68.11.5223-5230.2002
  67. McMahon H. T., Boucrot E., Membrane curvature at a glance, 10.1242/jcs.114454
  68. Lewis Ruthven N.A.H., McElhaney Ronald N., The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes, 10.1016/j.bbamem.2009.03.014
  69. Kondakova Tatiana, D'Heygère François, Feuilloley Marc J., Orange Nicole, Heipieper Hermann J., Duclairoir Poc Cécile, Glycerophospholipid synthesis and functions in Pseudomonas, 10.1016/j.chemphyslip.2015.06.006
  70. Morein, J. Biolumin. Chemilumin., 271, 6801 (1996)
  71. Mileykovskaya, J. Biolumin. Chemilumin., 278, 22193 (2003)
  72. Cabeen Matthew T, Charbon Godefroid, Vollmer Waldemar, Born Petra, Ausmees Nora, Weibel Douglas B, Jacobs-Wagner Christine, Bacterial cell curvature through mechanical control of cell growth, 10.1038/emboj.2009.61
  73. van den Brink-van der Laan E., Boots J.-W. P., Spelbrink R. E. J., Kool G. M., Breukink E., Killian J. A., de Kruijff B., Membrane Interaction of the Glycosyltransferase MurG: a Special Role for Cardiolipin, 10.1128/jb.185.13.3773-3779.2003
  74. Renner L. D., Weibel D. B., Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes, 10.1073/pnas.1015757108
  75. Brandenburg Klaus, Seydel Ulrich, Conformation and Supramolecular Structure of Lipid A, Lipid A in Cancer Therapy (2009) ISBN:9781441916020 p.25-38, 10.1007/978-1-4419-1603-7_3
  76. Haney Evan F., Nathoo Safia, Vogel Hans J., Prenner Elmar J., Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action, 10.1016/j.chemphyslip.2009.09.002
  77. Nguyen Leonard T., Haney Evan F., Vogel Hans J., The expanding scope of antimicrobial peptide structures and their modes of action, 10.1016/j.tibtech.2011.05.001
  78. Killian, EMBO J., 9, 815 (1990)
  79. Lohner Karl, Degovics Gabor, Laggner Peter, Gnamusch Eva, Paltauf Fritz, Squalene promotes the formation of non-bilayer structures in phospholipid model membranes, 10.1016/0005-2736(93)90232-o
  80. van Bambeke Françoise, Mingeot-Leclercq Marie-Paule, Brasseur Robert, Tulkens Paul M., Schanck André, Aminoglycoside antibiotics prevent the formation of non-bilayer structures in negatively-charged membranes. Comparative studies using fusogenic (bis(β-diethylaminoethylether)hexestrol) and aggregating (spermine) agents, 10.1016/0009-3084(95)02520-0
  81. Zweytick Dagmar, Tumer Sabine, Blondelle Sylvie E., Lohner Karl, Membrane curvature stress and antibacterial activity of lactoferricin derivatives, 10.1016/j.bbrc.2008.01.176
  82. Phillips Rob, Ursell Tristan, Wiggins Paul, Sens Pierre, Emerging roles for lipids in shaping membrane-protein function, 10.1038/nature08147
  83. Lingwood D., Simons K., Lipid Rafts As a Membrane-Organizing Principle, 10.1126/science.1174621
  84. Nyholm Thomas K.M., Lipid-protein interplay and lateral organization in biomembranes, 10.1016/j.chemphyslip.2015.05.008
  85. Matsumoto Kouji, Kusaka Jin, Nishibori Ayako, Hara Hiroshi, Lipid domains in bacterial membranes, 10.1111/j.1365-2958.2006.05317.x
  86. Mileykovskaya Eugenia, Dowhan William, Cardiolipin membrane domains in prokaryotes and eukaryotes, 10.1016/j.bbamem.2009.04.003
  87. Govindarajan Sutharsan, Nevo-Dinur Keren, Amster-Choder Orna, Compartmentalization and spatiotemporal organization of macromolecules in bacteria, 10.1111/j.1574-6976.2012.00348.x
  88. Muchová Katarína, Wilkinson Anthony J., Barák Imrich, Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan, 10.1111/j.1574-6968.2011.02417.x
  89. Renner, J. Biolumin. Chemilumin., 287, 38835 (2012)
  90. Oliver P. M., Crooks J. A., Leidl M., Yoon E. J., Saghatelian A., Weibel D. B., Localization of Anionic Phospholipids in Escherichia coli Cells, 10.1128/jb.01877-14
  91. Kawai F., Shoda M., Harashima R., Sadaie Y., Hara H., Matsumoto K., Cardiolipin Domains in Bacillus subtilis Marburg Membranes, 10.1128/jb.186.5.1475-1483.2004
  92. Bernal Patricia, Muñoz-Rojas Jesús, Hurtado Ana, Ramos Juan L., Segura Ana, A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality, 10.1111/j.1462-2920.2006.01236.x
  93. Brown Michael F., Curvature Forces in Membrane Lipid–Protein Interactions, 10.1021/bi301332v
  94. Lopez D., Kolter R., Functional microdomains in bacterial membranes, 10.1101/gad.1945010
  95. Rexroth Sascha, Mullineaux Conrad W., Ellinger Dorothea, Sendtko Esther, Rögner Matthias, Koenig Friederike, The Plasma Membrane of the CyanobacteriumGloeobacter violaceusContains Segregated Bioenergetic Domains, 10.1105/tpc.111.085779
  96. Epand Raquel F., Maloy Lee, Ramamoorthy Ayyalusamy, Epand Richard M., Amphipathic Helical Cationic Antimicrobial Peptides Promote Rapid Formation of Crystalline States in the Presence of Phosphatidylglycerol: Lipid Clustering in Anionic Membranes, 10.1016/j.bpj.2010.03.002
  97. Zhang, J. Biolumin. Chemilumin., 289, 11584 (2014)
  98. Reyes Jinnethe, Panesso Diana, Tran Truc T., Mishra Nagendra N., Cruz Melissa R., Munita Jose M., Singh Kavindra V., Yeaman Michael R., Murray Barbara E., Shamoo Yousif, Garsin Danielle, Bayer Arnold S., Arias Cesar A., A liaR Deletion Restores Susceptibility to Daptomycin and Antimicrobial Peptides in Multidrug-Resistant Enterococcus faecalis, 10.1093/infdis/jiu602
  99. Hoque Jiaul, Konai Mohini M., Gonuguntla Spandhana, Manjunath Goutham B., Samaddar Sandip, Yarlagadda Venkateswarlu, Haldar Jayanta, Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms, 10.1021/acs.jmedchem.5b00443
  100. Lázár Viktória, Nagy István, Spohn Réka, Csörgő Bálint, Györkei Ádám, Nyerges Ákos, Horváth Balázs, Vörös Andrea, Busa-Fekete Róbert, Hrtyan Mónika, Bogos Balázs, Méhi Orsolya, Fekete Gergely, Szappanos Balázs, Kégl Balázs, Papp Balázs, Pál Csaba, Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network, 10.1038/ncomms5352
  101. Toprak Erdal, Veres Adrian, Michel Jean-Baptiste, Chait Remy, Hartl Daniel L, Kishony Roy, Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, 10.1038/ng.1034
  102. Taber, Microbiol. Rev., 51, 439 (1987)
  103. Damper P D, Epstein W, Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics., 10.1128/aac.20.6.803
  104. Lazar V., Pal Singh G., Spohn R., Nagy I., Horvath B., Hrtyan M., Busa-Fekete R., Bogos B., Mehi O., Csorgo B., Posfai G., Fekete G., Szappanos B., Kegl B., Papp B., Pal C., Bacterial evolution of antibiotic hypersensitivity, 10.1038/msb.2013.57
  105. Oz Tugce, Guvenek Aysegul, Yildiz Sadik, Karaboga Enes, Tamer Yusuf Talha, Mumcuyan Nirva, Ozan Vedat Burak, Senturk Gizem Hazal, Cokol Murat, Yeh Pamela, Toprak Erdal, Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution, 10.1093/molbev/msu191
  106. Pál Csaba, Papp Balázs, Lázár Viktória, Collateral sensitivity of antibiotic-resistant microbes, 10.1016/j.tim.2015.02.009
  107. Bollenbach Tobias, Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution, 10.1016/j.mib.2015.05.008
  108. Marques C. N. H., Morozov A., Planzos P., Zelaya H. M., The Fatty Acid Signaling Molecule cis-2-Decenoic Acid Increases Metabolic Activity and Reverts Persister Cells to an Antimicrobial-Susceptible State, 10.1128/aem.01576-14
  109. Hurdle Julian G., O'Neill Alex J., Chopra Ian, Lee Richard E., Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections, 10.1038/nrmicro2474
  110. Jayaraman, Drug Des., Dev. Ther., 7, 449 (2013)
  111. Gorityala Bala Kishan, Guchhait Goutam, Fernando Dinesh M., Deo Soumya, McKenna Sean A., Zhanel George G., Kumar Ayush, Schweizer Frank, Adjuvants Based on Hybrid Antibiotics Overcome Resistance in Pseudomonas aeruginosa and Enhance Fluoroquinolone Efficacy, 10.1002/anie.201508330
  112. Worthington Roberta J., Melander Christian, Combination approaches to combat multidrug-resistant bacteria, 10.1016/j.tibtech.2012.12.006
  113. Sacksteder Katherine A, Protopopova Marina, Barry Clifton E, Andries Koen, Nacy Carol A, Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action, 10.2217/fmb.12.56
  114. Li Kai, Schurig-Briccio Lici A., Feng Xinxin, Upadhyay Ashutosh, Pujari Venugopal, Lechartier Benoit, Fontes Fabio L., Yang Hongliang, Rao Guodong, Zhu Wei, Gulati Anmol, No Joo Hwan, Cintra Giovana, Bogue Shannon, Liu Yi-Liang, Molohon Katie, Orlean Peter, Mitchell Douglas A., Freitas-Junior Lucio, Ren Feifei, Sun Hong, Jiang Tong, Li Yujie, Guo Rey-Ting, Cole Stewart T., Gennis Robert B., Crick Dean C., Oldfield Eric, Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases, 10.1021/jm500131s
  115. Allen Richard C., Popat Roman, Diggle Stephen P., Brown Sam P., Targeting virulence: can we make evolution-proof drugs?, 10.1038/nrmicro3232
  116. Guchhait, Angew. Chem., Int. Ed., 54, 6278 (2015)
  117. Allen N E, Hobbs J N, Alborn W E, Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032., 10.1128/aac.31.7.1093
  118. Allen N E, Alborn W E, Hobbs J N, Inhibition of membrane potential-dependent amino acid transport by daptomycin., 10.1128/aac.35.12.2639
  119. Alborn W E, Allen N E, Preston D A, Daptomycin disrupts membrane potential in growing Staphylococcus aureus., 10.1128/aac.35.11.2282
  120. Muthaiyan A., Silverman J. A., Jayaswal R. K., Wilkinson B. J., Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization, 10.1128/aac.01121-07
  121. Jung David, Rozek Annett, Okon Mark, Hancock Robert E.W, Structural Transitions as Determinants of the Action of the Calcium-Dependent Antibiotic Daptomycin, 10.1016/j.chembiol.2004.04.020
  122. Muraih Jawad K., Pearson Andre, Silverman Jared, Palmer Michael, Oligomerization of daptomycin on membranes, 10.1016/j.bbamem.2011.01.001
  123. Van Bambeke Françoise, Mingeot-Leclercq Marie-Paule, Struelens Marc J., Tulkens Paul M., The bacterial envelope as a target for novel anti-MRSA antibiotics, 10.1016/
  124. Baltz Richard H., Miao Vivian, Wrigley Stephen K., Natural products to drugs: daptomycin and related lipopeptide antibiotics, 10.1039/b416648p
  125. BORGHI ANGELO, ANTONINI PIERO, ZANOL MARGHERITA, FERRARI PIETRO, ZERILLI LUIGI FRANCO, LANCINI GIAN CARLO, Isolation and structure determination of two new analogs of teicoplanin, a glycopeptide antibiotic., 10.7164/antibiotics.42.361
  126. Dong Steven D., Oberthür Markus, Losey Heather C., Anderson John W., Eggert Ulrike S., Peczuh Mark W., Walsh Christopher T., Kahne Daniel, The Structural Basis for Induction of VanB Resistance, 10.1021/ja026342h
  127. McComas Casey C., Crowley Brendan M., Hwang Inkyu, Boger Dale L., Synthesis and evaluation of methyl ether derivatives of the vancomycin, teicoplanin, and ristocetin aglycon methyl esters, 10.1016/s0960-894x(03)00513-4
  128. COOPER ROBIN D. G., SNYDER NANCY J., ZWEIFEL MARK J., STASZAK MICHAEL A., WILKIE STEPHEN C., NICAS THALIA I., MULLEN DEBORAH L., BUTLER THOMAS F., RODRIGUEZ MICHAEL J., HUFF BRET E., THOMPSON RICHARD C., Reductive Alkylation of Glycopeptide Antibiotics: Synthesis and Antibacterial Activity., 10.7164/antibiotics.49.575
  129. Allen Norris E., Nicas Thalia I., Mechanism of action of oritavancin and related glycopeptide antibiotics, 10.1111/j.1574-6976.2003.tb00628.x
  130. Judice J.Kevin, Pace John L., Semi-synthetic glycopeptide antibacterials, 10.1016/j.bmcl.2003.08.067
  131. Higgins D. L., Chang R., Debabov D. V., Leung J., Wu T., Krause K. M., Sandvik E., Hubbard J. M., Kaniga K., Schmidt D. E., Gao Q., Cass R. T., Karr D. E., Benton B. M., Humphrey P. P., Telavancin, a Multifunctional Lipoglycopeptide, Disrupts both Cell Wall Synthesis and Cell Membrane Integrity in Methicillin-Resistant Staphylococcus aureus, 10.1128/aac.49.3.1127-1134.2005
  132. van Heijenoort J., Lipid Intermediates in the Biosynthesis of Bacterial Peptidoglycan, 10.1128/mmbr.00016-07
  133. Nannini Esteban C, Stryjewski Martin E, Corey G Ralph, Telavancin’s interactions with the bacterial cell membrane, 10.2217/fmb.09.122
  134. Lunde C. S., Hartouni S. R., Janc J. W., Mammen M., Humphrey P. P., Benton B. M., Telavancin Disrupts the Functional Integrity of the Bacterial Membrane through Targeted Interaction with the Cell Wall Precursor Lipid II, 10.1128/aac.01710-08
  135. Malabarba, J. Antimicrob. Chemother., 55, ii15 (2005)
  136. Bailey J., Summers K. M., Dalbavancin: A new lipoglycopeptide antibiotic, 10.2146/ajhp070255
  137. Cochrane Stephen A., Vederas John C., Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates : BACILLUS AND PAENIBACILLUS LIPOPEPTIDES, 10.1002/med.21321
  138. Hirsch H. A., McCarthy C. G., Finland M., Polymyxin B and Colistin: Activity, Resistance and Crossresistance in vitro., 10.3181/00379727-103-25511
  139. Kassamali Zahra, Jain Rupali, Danziger Larry H., An Update on the arsenal for multidrug-resistant Acinetobacter infections: Polymyxin antibiotics, 10.1016/j.ijid.2014.10.014
  140. Soon R. L., Nation R. L., Cockram S., Moffatt J. H., Harper M., Adler B., Boyce J. D., Larson I., Li J., Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment, 10.1093/jac/dkq422
  141. Hancock, Antimicrob. Agents Chemother., 43, 1317 (1999)
  142. Cajal Yolanda, Rogers Joseph, Berg Otto G., Jain Mahendra K., Intermembrane Molecular Contacts by Polymyxin B Mediate Exchange of Phospholipids†, 10.1021/bi9512408
  143. Clausell Adrià, Garcia-Subirats Maria, Pujol Montserrat, Busquets M. Antonia, Rabanal Francesc, Cajal Yolanda, Gram-Negative Outer and Inner Membrane Models:  Insertion of Cyclic Cationic Lipopeptides, 10.1021/jp064757+
  144. Vaara Martti, Vaara Timo, Structure–activity studies on novel polymyxin derivatives that carry only three positive charges, 10.1016/j.peptides.2010.09.010
  145. Eun Ye-Jin, Foss Marie H., Kiekebusch Daniela, Pauw Daniel A., Westler William M., Thanbichler Martin, Weibel Douglas B., DCAP: A Broad-Spectrum Antibiotic That Targets the Cytoplasmic Membrane of Bacteria, 10.1021/ja302542j
  146. Vooturi Sunil K., Dewal Mahender B., Firestine Steven M., Examination of a synthetic benzophenone membrane-targeted antibiotic, 10.1039/c1ob05643c
  147. Ooi N., Miller K., Randall C., Rhys-Williams W., Love W., Chopra I., XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms, 10.1093/jac/dkp409
  148. Cherian Philip T., Wu Xiaoqian, Maddox Marcus M., Singh Aman P., Lee Richard E., Hurdle Julian G., Chemical Modulation of the Biological Activity of Reutericyclin: a Membrane-Active Antibiotic from Lactobacillus reuteri , 10.1038/srep04721
  149. Hu Y., Coates A. R. M., Enhancement by novel anti-methicillin-resistant Staphylococcus aureus compound HT61 of the activity of neomycin, gentamicin, mupirocin and chlorhexidine: in vitro and in vivo studies, 10.1093/jac/dks384
  150. Matsumoto Yoshimi, Kaihatsu Kunihiro, Nishino Kunihiko, Ogawa Miho, Kato Nobuo, Yamaguchi Akihito, Antibacterial and Antifungal Activities of New Acylated Derivatives of Epigallocatechin Gallate, 10.3389/fmicb.2012.00053
  151. Aranda Francisco J., Espuny María J., Marqués Ana, Teruel José A., Manresa Ángeles, Ortiz Antonio, Thermodynamics of the Interaction of a Dirhamnolipid Biosurfactant Secreted byPseudomonas aeruginosawith Phospholipid Membranes, 10.1021/la061464z
  152. Djouhri-Bouktab Lamia, Vidal Nicolas, Rolain Jean Marc, Brunel Jean Michel, Synthesis of New 3,20-Bispolyaminosteroid Squalamine Analogues and Evaluation of Their Antimicrobial Activities, 10.1021/jm200506x
  153. Zhang W., Li Y., Qian G., Wang Y., Chen H., Li Y.-Z., Liu F., Shen Y., Du L., Identification and Characterization of the Anti-Methicillin-Resistant Staphylococcus aureus WAP-8294A2 Biosynthetic Gene Cluster from Lysobacter enzymogenes OH11, 10.1128/aac.05370-11
  154. Teruel José A., Ortiz Antonio, Aranda Francisco J., Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength, 10.1016/j.chemphyslip.2014.03.005
  155. Zou Hanxun, Koh Jun-Jie, Li Jianguo, Qiu Shengxiang, Aung Thet Tun, Lin Huifen, Lakshminarayanan Rajamani, Dai Xiaoping, Tang Charles, Lim Fang Hui, Zhou Lei, Tan Ai Ling, Verma Chandra, Tan Donald T. H., Chan Hardy Sze On, Saraswathi Padmanabhan, Cao Derong, Liu Shouping, Beuerman Roger W., Design and Synthesis of Amphiphilic Xanthone-Based, Membrane-Targeting Antimicrobials with Improved Membrane Selectivity, 10.1021/jm301683j
  156. Wang Guangshun, Mishra Biswajit, Lau Kyle, Lushnikova Tamara, Golla Radha, Wang Xiuqing, Antimicrobial Peptides in 2014, 10.3390/ph8010123
  157. Wang Guangshun, Human Antimicrobial Peptides and Proteins, 10.3390/ph7050545
  158. Mojsoska Biljana, Jenssen Håvard, Peptides and Peptidomimetics for Antimicrobial Drug Design, 10.3390/ph8030366
  159. Herzog Ido M., Green Keith D., Berkov-Zrihen Yifat, Feldman Mark, Vidavski Roee R., Eldar-Boock Anat, Satchi-Fainaro Ronit, Eldar Avigdor, Garneau-Tsodikova Sylvie, Fridman Micha, 6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes, 10.1002/anie.201200761
  160. Epand R.M., Epand R.F., Savage P.B., Ceragenins (Cationic Steroid Compounds), a novel class of antimicrobial agents, 10.1358/dnp.2008.21.6.1246829
  161. Baussanne Isabelle, Bussière Antoine, Halder Somnath, Ganem-Elbaz Carine, Ouberai Myriam, Riou Mickael, Paris Jean-Marc, Ennifar Eric, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Synthesis and Antimicrobial Evaluation of Amphiphilic Neamine Derivatives, 10.1021/jm900615h
  162. Ouberai Myriam, El Garch Farid, Bussiere Antoine, Riou Mickael, Alsteens David, Lins Laurence, Baussanne Isabelle, Dufrêne Yves F., Brasseur Robert, Decout Jean-Luc, Mingeot-Leclercq Marie-Paule, The Pseudomonas aeruginosa membranes: A target for a new amphiphilic aminoglycoside derivative?, 10.1016/j.bbamem.2011.01.014
  163. Epand R. F., Pollard J. E., Wright J. O., Savage P. B., Epand R. M., Depolarization, Bacterial Membrane Composition, and the Antimicrobial Action of Ceragenins, 10.1128/aac.00380-10
  164. Bozkurt-Guzel Cagla, Savage Paul B., Akcali Alper, Ozbek-Celik Berna, Potential Synergy Activity of the Novel Ceragenin, CSA-13, against Carbapenem-ResistantAcinetobacter baumanniiStrains Isolated from Bacteremia Patients, 10.1155/2014/710273
  165. Nagant Carole, Pitts Betsey, Stewart Philip S., Feng Yanshu, Savage Paul B., Dehaye Jean-Paul, Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed byPseudomonas aeruginosa, 10.1002/mbo3.77
  166. Pollard J. E., Snarr J., Chaudhary V., Jennings J. D., Shaw H., Christiansen B., Wright J., Jia W., Bishop R. E., Savage P. B., In vitro evaluation of the potential for resistance development to ceragenin CSA-13, 10.1093/jac/dks276
  167. Kudo Fumitaka, Eguchi Tadashi, Aminoglycoside Antibiotics: New Insights into the Biosynthetic Machinery of Old Drugs, 10.1002/tcr.201500210
  168. Fourmy Dominique, Recht Michael I, Puglisi Joseph D, Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 s rRNA, 10.1006/jmbi.1997.1552
  169. Francois B., Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding, 10.1093/nar/gki862
  170. Borovinskaya Maria A, Pai Raj D, Zhang Wen, Schuwirth Barbara S, Holton James M, Hirokawa Go, Kaji Hideko, Kaji Akira, Cate Jamie H Doudna, Structural basis for aminoglycoside inhibition of bacterial ribosome recycling, 10.1038/nsmb1271
  171. Tsai Albert, Uemura Sotaro, Johansson Magnus, Puglisi Elisabetta Viani, Marshall R. Andrew, Aitken Colin Echeverría, Korlach Jonas, Ehrenberg Måns, Puglisi Joseph D., The Impact of Aminoglycosides on the Dynamics of Translation Elongation, 10.1016/j.celrep.2013.01.027
  172. Fosso Marina Y., Li Yijia, Garneau-Tsodikova Sylvie, New trends in the use of aminoglycosides, 10.1039/c4md00163j
  173. Garneau-Tsodikova Sylvie, Labby Kristin J., Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives, 10.1039/c5md00344j
  174. Chandrika Nishad Thamban, Garneau-Tsodikova Sylvie, A review of patents (2011–2015) towards combating resistance to and toxicity of aminoglycosides, 10.1039/c5md00453e
  175. Sandoval, J. Am. Soc. Nephrol., 9, 167 (1998)
  176. Mingeot-Leclercq, Antimicrob. Agents Chemother., 43, 1003 (1999)
  177. Servais H., Ortiz A., Devuyst O., Denamur S., Tulkens P. M., Mingeot-Leclercq M.-P., Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation, 10.1007/s10495-007-0151-z
  178. Denamur Sophie, Tyteca Donatienne, Marchand-Brynaert Jacqueline, Van Bambeke Françoise, Tulkens Paul M., Courtoy Pierre J., Mingeot-Leclercq Marie-Paule, Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic, 10.1016/j.freeradbiomed.2011.07.015
  179. Tabuchi K., Nishimura B., Nakamagoe M., Hayashi K., Nakayama M., Hara A., Ototoxicity: Mechanisms of Cochlear Impairment and its Prevention, 10.2174/092986711797535254
  180. Furness David N., Molecular basis of hair cell loss, 10.1007/s00441-015-2113-z
  181. Perigolo de Oliveira Maralise, Constant Jean-François, Peuchmaur Marine, Pitta Ivan, Décout Jean-Luc, Antibiotic Drugs Aminoglycosides Cleave DNA at Abasic Sites: Shedding New Light on Their Toxicity?, 10.1021/tx4002836
  182. Pinsetta Flávio Roberto, Kawano Daniel Fábio, de Carvalho Marcelo Rodrigues, de Oliveira José Antônio A., Corrado Alexandre P., Hyppolito Miguel Ângelo, Carvalho Ivone, Synthesis of neamine-based pseudodisaccharides as potential vestibulotoxic agents to treat vertigo in Ménière’s disease, 10.1016/j.carres.2013.03.019
  183. Shalev Moran, Baasov Timor, When proteins start to make sense: fine-tuning of aminoglycosides for PTC suppression therapy, 10.1039/c4md00081a
  184. Luft F. C., Gentamicin as gene therapy, 10.1007/s00109-002-0367-x
  185. Wilschanski Michael, Yahav Yaacov, Yaacov Yasmin, Blau Hannah, Bentur Lea, Rivlin Joseph, Aviram Micha, Bdolah-Abram Tali, Bebok Zsuzsa, Shushi Liat, Kerem Batsheva, Kerem Eitan, Gentamicin-Induced Correction of CFTR Function in Patients with Cystic Fibrosis andCFTRStop Mutations, 10.1056/nejmoa022170
  186. Kuschal Christiane, Khan Sikandar G., Enk Benedikt, DiGiovanna John J., Kraemer Kenneth H., Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients, 10.1111/exd.12655
  187. Thomas Jason R., Hergenrother Paul J., Targeting RNA with Small Molecules, 10.1021/cr0681546
  188. Maurel M.-C., Biard B., Moulinier C., Braz D., Nugier J., Chaumas I., Reboud-Ravaux M., Décout J.-L., RNA-acting antibiotics: in-vitro selection of RNA aptamers for the design of new bioactive molecules less susceptible to bacterial resistance, 10.1211/002235702320266163
  189. ENNIFAR E, PAILLART J, BERNACCHI S, WALTER P, PALE P, DECOUT J, MARQUET R, DUMAS P, A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site, 10.1016/j.biochi.2007.03.003
  190. Zapp Maria L., Stern Seth, Green Michael R., Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production, 10.1016/0092-8674(93)90720-b
  191. Mei Houng-Yau, Galan Adam A., Halim Nadia S., Mack David P., Moreland David W., Sanders Kathryn B., Hoa N. Truong, Czarnik Anthony W., Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics, 10.1016/0960-894x(95)00467-8
  192. Werstuck Geoffrey, Zapp Maria L., Green Michael R., A non-canonical base pair within the human immunodeficiency virus Rev-responsive element is involved in both Rev and small molecule recognition, 10.1016/s1074-5521(96)90289-6
  193. Tok Jeffrey B.-H., Dunn Lindsey J., Des Jean Ryan C., Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct, 10.1016/s0960-894x(01)00149-4
  194. Wang Yong, Hamasaki Keita, Rando Robert R., Specificity of Aminoglycoside Binding to RNA Constructs Derived from the 16S rRNA Decoding Region and the HIV-RRE Activator Region†, 10.1021/bi962095g
  195. Ennifar E., Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell, 10.1093/nar/gkl317
  196. Arya Dev P., New Approaches Toward Recognition of Nucleic Acid Triple Helices, 10.1021/ar100113q
  197. Kumar Sunil, Spano Meredith Newby, Arya Dev P., Influence of linker length in shape recognition of B∗ DNA by dimeric aminoglycosides, 10.1016/j.bmc.2015.04.082
  198. Kirk Sarah R., Tor Yitzhak, Hydrolysis of an RNA dinucleoside monophosphate by neomycin B, 10.1039/a706023h
  199. Sreedhara Alavattam, Patwardhan Anjali, Cowan J. A., Novel reagents for targeted cleavage of RNA sequences: towards a new family of inorganic pharmaceuticals, 10.1039/a901140d
  200. Chen Chun-An, Cowan J. A., In vivo cleavage of a target RNA by copper kanamycin A. Direct observation by a fluorescence assayElectronic supplementary material (ESI) available: experimental details for plasmid construction, and the fluorescence and assay measurements. See, 10.1039/b108439a
  201. Szczepanik Wojciech, Ciesiołka Jerzy, Wrzesiński Jan, Skała Jacek, Jeżowska-Bojczuk Małgorzata, Interaction of aminoglycosides and their copper(ii) complexes with nucleic acids: implication to the toxicity of these drugs, 10.1039/b300332a
  202. Szczepanik Wojciech, Kaczmarek Piotr, Jeżowska-Bojczuk Małgorzata, Oxidative Activity of Copper(II) Complexes with Aminoglycoside Antibiotics as Implication to the Toxicity of These Drugs, 10.1155/s1565363304000056
  203. Sreedhara Alavattam, Cowan James A., Efficient catalytic cleavage of DNA mediated by metalloaminoglycosides†, 10.1039/a802903b
  204. Sreedhara Alavattam, Freed John D., Cowan J. A., Efficient Inorganic Deoxyribonucleases. Greater than 50-Million-Fold Rate Enhancement in Enzyme-Like DNA Cleavage, 10.1021/ja994411v
  205. Patwardhan Anjali, Cowan J. A., Highly specific oxidative damage of double-strand DNA by copper aminoglycosides, 10.1039/b103789g
  206. Wright Gerard D., Berghuis Albert M., Mobashery Shahriar, Aminoglycoside Antibiotics, Resolving the Antibiotic Paradox (1998) ISBN:9781461372202 p.27-69, 10.1007/978-1-4615-4897-3_4
  207. Mingeot-Leclercq, Antimicrob. Agents Chemother., 43, 727 (1999)
  208. Kotra L. P., Haddad J., Mobashery S., Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance, 10.1128/aac.44.12.3249-3256.2000
  209. Magnet Sophie, Blanchard John S., Molecular Insights into Aminoglycoside Action and Resistance, 10.1021/cr0301088
  210. Jana, Appl. Environ. Microbiol., 70, 140 (2006)
  211. Perry Julie A., Wright Gerard D., The antibiotic resistance “mobilome”: searching for the link between environment and clinic, 10.3389/fmicb.2013.00138
  212. Morita Yuji, Tomida Junko, Kawamura Yoshiaki, MexXY multidrug efflux system of Pseudomonas aeruginosa, 10.3389/fmicb.2012.00408
  213. Morita Yuji, Tomida Junko, Kawamura Yoshiaki, Responses of Pseudomonas aeruginosa to antimicrobials, 10.3389/fmicb.2013.00422
  214. Strateva Tanya, Yordanov Daniel, Pseudomonas aeruginosa – a phenomenon of bacterial resistance, 10.1099/jmm.0.009142-0
  215. Krahn T., Gilmour C., Tilak J., Fraud S., Kerr N., Lau C. H.-F., Poole K., Determinants of Intrinsic Aminoglycoside Resistance in Pseudomonas aeruginosa, 10.1128/aac.01446-12
  216. Ramirez Maria S., Tolmasky Marcelo E., Aminoglycoside modifying enzymes, 10.1016/j.drup.2010.08.003
  217. Labby Kristin J, Garneau-Tsodikova Sylvie, Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections, 10.4155/fmc.13.80
  218. Vong Kenward, Auclair Karine, Understanding and overcoming aminoglycoside resistance caused by N-6′-acetyltransferase, 10.1039/c2md00253a
  219. Potron Anaïs, Poirel Laurent, Nordmann Patrice, Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii : Mechanisms and epidemiology, 10.1016/j.ijantimicag.2015.03.001
  220. Kotra Lakshmi, Mobashery Shahriar, A Renaissance of Interest in Aminoglycoside Antibiotics, 10.2174/1385272013375698
  221. Hermann T., Aminoglycoside antibiotics: old drugs and new therapeutic approaches, 10.1007/s00018-007-7034-x
  222. Silva Julierme, Carvalho Ivone, New Insights into Aminoglycoside Antibiotics and Derivatives, 10.2174/092986707780362817
  223. Zhou Jian, Wang Guannan, Zhang Li-He, Ye Xin-Shan, Modifications of aminoglycoside antibiotics targeting RNA, 10.1002/med.20085
  224. Houghton  Jacob L., Green Keith D., Chen  Wenjing, Garneau-Tsodikova Sylvie, The Future of Aminoglycosides: The End or Renaissance?, 10.1002/cbic.200900779
  225. Dozzo Paola, Moser Heinz E, New aminoglycoside antibiotics, 10.1517/13543776.2010.506189
  226. Guo Lina, Wan Yue, Wang Xin, George Wang Peng, Zhao Wei, Development of Aminoglycoside Antibiotics by Carbohydrate Chemistry, 10.2174/138955712803832672
  227. K. E. Hevener , S. Y.Cao, T.Zhu, P. C.Su, S.Mehboob and M. E.Johnson, Book Series: Ann. Reports Med. Chem., ed. M. C. Desai, 2013, vol. 48, pp. 283–298
  228. Berkov-Zrihen Yifat, Green Keith D., Labby Kristin J., Feldman Mark, Garneau-Tsodikova Sylvie, Fridman Micha, Synthesis and Evaluation of Hetero- and Homodimers of Ribosome-Targeting Antibiotics: Antimicrobial Activity, in Vitro Inhibition of Translation, and Drug Resistance, 10.1021/jm400707f
  229. François Boris, Szychowski Janek, Adhikari Susanta Sekhar, Pachamuthu Kandasamy, Swayze Eric E., Griffey Richard H., Migawa Michael T., Westhof Eric, Hanessian Stephen, Antibacterial Aminoglycosides with a Modified Mode of Binding to the Ribosomal-RNA Decoding Site, 10.1002/anie.200462092
  230. François Boris, Szychowski Janek, Adhikari Susanta Sekhar, Pachamuthu Kandasamy, Swayze Eric E., Griffey Richard H., Migawa Michael T., Westhof Eric, Hanessian Stephen, Antibacterial Aminoglycosides with a Modified Mode of Binding to the Ribosomal-RNA Decoding Site, 10.1002/anie.200790074
  231. Hanessian Stephen, Szychowski Janek, Adhikari Susanta Sekhar, Vasquez Guillermo, Kandasamy Pachamuthu, Swayze Eric E., Migawa Michael T., Ranken Ray, François Boris, Wirmer-Bartoschek Julia, Kondo Jiro, Westhof Eric, Structure-Based Design, Synthesis, and A-Site rRNA Cocrystal Complexes of Functionally Novel Aminoglycoside Antibiotics:  C2‘ ‘ Ether Analogues of Paromomycin, 10.1021/jm061200+
  232. Hanessian Stephen, Pachamuthu Kandasamy, Szychowski Janek, Giguère Alexandre, Swayze Eric E., Migawa Michael T., François Boris, Kondo Jiro, Westhof Eric, Structure-based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: A synergistic hydrophobic effect against resistant bacteria, 10.1016/j.bmcl.2010.09.084
  233. Szychowski Janek, Kondo Jiro, Zahr Omar, Auclair Karine, Westhof Eric, Hanessian Stephen, Keillor Jeffrey W., Inhibition of Aminoglycoside-Deactivating Enzymes APH(3′)-IIIa and AAC(6′)-Ii by Amphiphilic Paromomycin O2′′-Ether Analogues, 10.1002/cmdc.201100346
  234. Zhang Jianjun, Chiang Fang-I., Wu Long, Czyryca Przemyslaw Greg, Li Ding, Chang Cheng-Wei Tom, Surprising Alteration of Antibacterial Activity of 5′′-Modified Neomycin against Resistant Bacteria, 10.1021/jm800997s
  235. Zhang Jianjun, Keller Katherine, Takemoto Jon Y, Bensaci Mekki, Litke Anthony, Czyryca Przemyslaw Greg, Chang Cheng-Wei Tom, Synthesis and combinational antibacterial study of 5″-modified neomycin, 10.1038/ja.2009.66
  236. Zhang Jianjun, Litke Anthony, Keller Katherine, Rai Ravi, Chang Cheng-Wei Tom, Synthesis of novel aminoglycosides via allylic azide rearrangement for investigating the significance of 2′-amino group, 10.1016/j.bmc.2010.01.027
  237. Udumula Venkatareddy, Ham Young Wan, Fosso Marina Y., Chan Ka Yee, Rai Ravi, Zhang Jianjun, Li Jie, Chang Cheng-Wei Tom, Investigation of antibacterial mode of action for traditional and amphiphilic aminoglycosides, 10.1016/j.bmcl.2013.01.073
  238. Fosso Marina, AlFindee Madher N., Zhang Qian, Nziko Vincent de Paul Nzuwah, Kawasaki Yukie, Shrestha Sanjib K., Bearss Jeremiah, Gregory Rylee, Takemoto Jon Y., Chang Cheng-Wei Tom, Structure–Activity Relationships for Antibacterial to Antifungal Conversion of Kanamycin to Amphiphilic Analogues, 10.1021/acs.joc.5b00248
  239. Bera Smritilekha, Zhanel George G., Schweizer Frank, Design, Synthesis, and Antibacterial Activities of Neomycin−Lipid Conjugates: Polycationic Lipids with Potent Gram-Positive Activity, 10.1021/jm800345u
  240. Bera Smritilekha, Zhanel George G., Schweizer Frank, Antibacterial Activities of Aminoglycoside Antibiotics-Derived Cationic Amphiphiles. Polyol-Modified Neomycin B-, Kanamycin A-, Amikacin-, and Neamine-Based Amphiphiles with Potent Broad Spectrum Antibacterial Activity, 10.1021/jm1000437
  241. Bera Smritilekha, Zhanel George G., Schweizer Frank, Antibacterial activity of guanidinylated neomycin B- and kanamycin A-derived amphiphilic lipid conjugates, 10.1093/jac/dkq083
  242. Bera Smritilekha, Zhanel George G., Schweizer Frank, Evaluation of amphiphilic aminoglycoside–peptide triazole conjugates as antibacterial agents, 10.1016/j.bmcl.2010.03.116
  243. Bera Smritilekha, Zhanel George G., Schweizer Frank, Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates, 10.1016/j.carres.2011.01.015
  244. Findlay Brandon, Zhanel George G., Schweizer Frank, Neomycin–phenolic conjugates: Polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding, 10.1016/j.bmcl.2012.01.025
  245. Bera Smritilekha, Dhondikubeer Ramesh, Findlay Brandon, Zhanel George G., Schweizer Frank, Synthesis and Antibacterial Activities of Amphiphilic Neomycin B-based Bilipid Conjugates and Fluorinated Neomycin B-based Lipids, 10.3390/molecules17089129
  246. Dhondikubeer Ramesh, Bera Smritilekha, Zhanel George G, Schweizer Frank, Antibacterial activity of amphiphilic tobramycin, 10.1038/ja.2012.59
  247. Guchhait Goutam, Altieri Anthony, Gorityala Balakishan, Yang Xuan, Findlay Brandon, Zhanel George G., Mookherjee Neeloffer, Schweizer Frank, Amphiphilic Tobramycins with Immunomodulatory Properties, 10.1002/anie.201500598
  248. Shaul Pazit, Green Keith D., Rutenberg Roi, Kramer Maria, Berkov-Zrihen Yifat, Breiner-Goldstein Elinor, Garneau-Tsodikova Sylvie, Fridman Micha, Assessment of 6′- and 6′′′-N-acylation of aminoglycosides as a strategy to overcome bacterial resistance, 10.1039/c0ob01133a
  249. Herzog Ido M., Feldman Mark, Eldar-Boock Anat, Satchi-Fainaro Ronit, Fridman Micha, Design of membrane targeting tobramycin-based cationic amphiphiles with reduced hemolytic activity, 10.1039/c2md20162c
  250. Berkov-Zrihen Yifat, Herzog Ido M., Feldman Mark, Sonn-Segev Adar, Roichman Yael, Fridman Micha, Di-alkylated paromomycin derivatives: Targeting the membranes of Gram positive pathogens that cause skin infections, 10.1016/j.bmc.2013.03.046
  251. Berkov-Zrihen Yifat, Herzog Ido M., Feldman Mark, Fridman Micha, Site-Selective Displacement of Tobramycin Hydroxyls for Preparation of Antimicrobial Cationic Amphiphiles, 10.1021/ol4030138
  252. Berkov-Zrihen Yifat, Herzog Ido M., Benhamou Raphael I., Feldman Mark, Steinbuch Kfir B., Shaul Pazit, Lerer Shachar, Eldar Avigdor, Fridman Micha, Tobramycin and Nebramine as Pseudo-oligosaccharide Scaffolds for the Development of Antimicrobial Cationic Amphiphiles, 10.1002/chem.201406404
  253. Benhamou Raphael I., Shaul Pazit, Herzog Ido M., Fridman Micha, Di-N-Methylation of Anti-Gram-Positive Aminoglycoside-Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram-Negative Bacteria, 10.1002/anie.201506814
  254. Fosso Marina Y., Shrestha Sanjib K., Green Keith D., Garneau-Tsodikova Sylvie, Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles, 10.1021/acs.jmedchem.5b01375
  255. Chang C.-W. T., Takemoto J. Y., Antifungal amphiphilic aminoglycosides, 10.1039/c4md00078a
  256. Herzog Ido M., Fridman Micha, Design and synthesis of membrane-targeting antibiotics: from peptides- to aminosugar-based antimicrobial cationic amphiphiles, 10.1039/c4md00012a
  257. B. K. Gorityala , G.Guchhait and F.Schweizer, Amphiphilic Aminoglycoside Antimicrobials in Antibacterial Discovery, in Carbohydrates in Drug Design and Discovery, ed. J. Jimenez-Barbero, F. J. Canada and S. Martin-Santamaria, Royal Society of Chemistry, 2015, pp. 255–285
  258. Chang Cheng-Wei T, Fosso Marina, Kawasaki Yukie, Shrestha Sanjib, Bensaci Mekki F, Wang Jinhua, Evans Conrad K, Takemoto Jon Y, Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides, 10.1038/ja.2010.110
  259. Inoue, MedChemComm, 15, 676 (2014)
  260. Aissaoui Abderrahim, Oudrhiri Noufissa, Petit Laure, Hauchecorne Michelle, Kan Erwan, Sainlos Matthieu, Julia Sebastien, Navarro Jean, Vigneron Jean-Pierre , Lehn Jean-Marie, Progress in Gene Delivery by Cationic Lipids : Guanidinium-Cholesterol-Based Systems as an Example, 10.2174/1389450023348082
  261. Sainlos Matthieu, Hauchecorne Michelle, Oudrhiri Noufissa, Zertal-Zidani Samia, Aissaoui Abderrahim, Vigneron Jean-Pierre, Lehn Jean-Marie, Lehn Pierre, Kanamycin A-Derived Cationic Lipids as Vectors for Gene Transfection, 10.1002/cbic.200400344
  262. Le Gall Tony, Baussanne Isabelle, Halder Somnath, Carmoy Nathalie, Montier Tristan, Lehn Pierre, Décout Jean-Luc, Synthesis and Transfection Properties of a Series of Lipidic Neamine Derivatives, 10.1021/bc900062z
  263. Desigaux L., Sainlos M., Lambert O., Chevre R., Letrou-Bonneval E., Vigneron J.-P., Lehn P., Lehn J.-M., Pitard B., Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference, 10.1073/pnas.0707431104
  264. Riguet Emmanuel, Tripathi Snehlata, Chaubey Binay, Désiré Jérôme, Pandey Virendra N., Décout Jean-Luc, A Peptide Nucleic Acid−Neamine Conjugate That Targets and Cleaves HIV-1 TAR RNA Inhibits Viral Replication†, 10.1021/jm049642d
  265. Chaubey Binay, Tripathi Snehlata, Désiré Jérome, Baussanne Isabelle, Décout Jean-Luc, Pandey Virendra N., Mechanism of RNA Cleavage Catalyzed by Sequence Specific Polyamide Nucleic Acid-Neamine Conjugate, 10.1089/oli.2007.0085
  266. Das Indrajit, Désiré Jérôme, Manvar Dinesh, Baussanne Isabelle, Pandey Virendra N., Décout Jean-Luc, A Peptide Nucleic Acid–Aminosugar Conjugate Targeting Transactivation Response Element of HIV-1 RNA Genome Shows a High Bioavailability in Human Cells and Strongly Inhibits Tat-Mediated Transactivation of HIV-1 Transcription, 10.1021/jm300253q
  267. Labro, Curr. Opin. Invest. Drugs, 3, 61 (2002)
  268. Botto Robert E., Coxon Bruce, Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides, 10.1021/ja00342a062
  269. Sutrisno, Baran, Lawrance, von Nagy-Felsobuki, 10.1023/a:1016604828024
  270. Andac Cenk A., Stringfellow Thomas C., Hornemann Ulfert, Noyanalpan Ningur, NMR and amber analysis of the neamine pharmacophore for the design of novel aminoglycoside antibiotics, 10.1016/j.bioorg.2010.10.002