User menu

Nonparametric Least Squares Methods for Stochastic Frontier Models

Bibliographic reference Simar, Léopold ; Van Keilegom, Ingrid ; Zelenyuk, Valentin. Nonparametric Least Squares Methods for Stochastic Frontier Models. In: Journal of Productivity Analysis, Vol. 47, no. 3, p. 189-204 (2017)
Permanent URL http://hdl.handle.net/2078.1/174705
  1. Aigner Dennis, Lovell C.A.Knox, Schmidt Peter, Formulation and estimation of stochastic frontier production function models, 10.1016/0304-4076(77)90052-5
  2. AITCHISON J., AITKEN C. G. G., Multivariate binary discrimination by the kernel method, 10.1093/biomet/63.3.413
  3. Badunenko Oleg, Henderson Daniel J., Zelenyuk Valentin, Technological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s*, 10.1111/j.1468-0084.2008.00508.x
  4. Carree Martin A., Technological inefficiency and the skewness of the error component in stochastic frontier analysis, 10.1016/s0165-1765(02)00119-2
  5. Chen Lu-Hung, Cheng Ming-Yen, Peng Liang, Conditional variance estimation in heteroscedastic regression models, 10.1016/j.jspi.2008.04.020
  6. Coelli Tim, Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis, 10.1007/bf01076978
  7. DAOUIA ABDELAATI, PARK BYEONG U., On Projection-type Estimators of Multivariate Isotonic Functions : On isotonic projection-type estimators, 10.1111/j.1467-9469.2012.00815.x
  8. Daouia Abdelaati, Simar Léopold, Robust nonparametric estimators of monotone boundaries, 10.1016/j.jmva.2004.10.005
  9. Manteiga Wenceslao Gonz�lez, Delgado Miguel A., bootstrap, 10.1214/aos/1013203462
  10. Du P, Parmeter C, Racine J (2013) Nonparametric kernel regression with multiple predictors and multiple shape constraints. Stat Sin 23:1347–1371
  11. Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman and Hall, London
  12. Fan Y, Li Q, Weersink A (1996) Semiparametric estimation of stochastic production frontier. J Bus Econ Stat 14:460–468
  13. Fan J, Efficient estimation of conditional variance functions in stochastic regression, 10.1093/biomet/85.3.645
  14. Greene William H., A Gamma-distributed stochastic frontier model, 10.1016/0304-4076(90)90052-u
  15. Henderson Daniel J., Russell R. Robert, HUMAN CAPITAL AND CONVERGENCE: A PRODUCTION-FRONTIER APPROACH*, 10.1111/j.1468-2354.2005.00364.x
  16. Henderson DJ, Zelenyuk V (2007) Testing for (efficiency) catching-up. South Econ J 73(4):1003–1019
  17. Henderson Daniel J., Li Qi, Parmeter Christopher F., Yao Shuang, Gradient-based smoothing parameter selection for nonparametric regression estimation, 10.1016/j.jeconom.2014.09.007
  18. Jondrow James, Knox Lovell C.A., Materov Ivan S., Schmidt Peter, On the estimation of technical inefficiency in the stochastic frontier production function model, 10.1016/0304-4076(82)90004-5
  19. Kneip Alois, Simar L�opold, A general framework for frontier estimation with panel data, 10.1007/bf00157041
  20. Kumar Subodh, Russell R. Robert, Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence, 10.1257/00028280260136381
  21. Kumbhakar Subal C., Lovell C. A. Knox, Stochastic Frontier Analysis, ISBN:9781139174411, 10.1017/cbo9781139174411
  22. Kumbhakar Subal C., Park Byeong U., Simar Léopold, Tsionas Efthymios G., Nonparametric stochastic frontiers: A local maximum likelihood approach, 10.1016/j.jeconom.2006.03.006
  23. Kuosmanen Timo, Representation theorem for convex nonparametric least squares, 10.1111/j.1368-423x.2008.00239.x
  24. Li Q, Racine JS (2007) Nonparametric econometrics: theory and practice. Princeton University Press, Princeton
  25. Li Degui, Simar Léopold, Zelenyuk Valentin, Generalized nonparametric smoothing with mixed discrete and continuous data, 10.1016/j.csda.2014.06.003
  26. Masry Elias, MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES, 10.1111/j.1467-9892.1996.tb00294.x
  27. Meeusen Wim, van Den Broeck Julien, Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error, 10.2307/2525757
  28. Olson Jerome A., Schmidt Peter, Waldman Donald M., A Monte Carlo study of estimators of stochastic frontier production functions, 10.1016/0304-4076(80)90043-3
  29. Pagan Adrian, Ullah Aman, Nonparametric Econometrics, ISBN:9780511612503, 10.1017/cbo9780511612503
  30. Park B.U., Sickles R.C., Simar L., Stochastic panel frontiers: A semiparametric approach, 10.1016/s0304-4076(97)00087-0
  31. Park Byeong U., Simar Léopold, Zelenyuk Valentin, Local likelihood estimation of truncated regression and its partial derivatives: Theory and application, 10.1016/j.jeconom.2008.08.007
  32. Parmeter C, Racine JS (2012) Smooth constrained frontier analysis. In: Swanson N, Chen X (eds) Recent advances and future directions in causality, prediction, and specification analysis. Springer, Berlin, pp 463–488
  33. Parmeter C, Wang HJ, Kumbhakar S (2015) Nonparametric estimation of the determinants of inefficiency. Working paper
  34. Racine Jeff, Li Qi, Nonparametric estimation of regression functions with both categorical and continuous data, 10.1016/s0304-4076(03)00157-x
  35. Ritter Christian, Simar Léopold, 10.1023/a:1007751524050
  36. Schmidt P, Sickles RC (1984) Production frontiers and panel data. J Bus Econ Stat 2(4):367–374
  37. Approximation Theorems of Mathematical Statistics, ISBN:9780470316481, 10.1002/9780470316481
  38. Simar Léopold, Wilson Paul W., Estimation and inference in two-stage, semi-parametric models of production processes, 10.1016/j.jeconom.2005.07.009
  39. Simar Léopold, Wilson Paul W., Inferences from Cross-Sectional, Stochastic Frontier Models, 10.1080/07474930903324523
  40. Simar Léopold, Wilson Paul W., Statistical Approaches for Non-parametric Frontier Models: A Guided Tour : Non-parametric Frontier Models, 10.1111/insr.12056
  41. Simar Léopold, Zelenyuk Valentin, On Testing Equality of Distributions of Technical Efficiency Scores, 10.1080/07474930600972582
  42. Simar Léopold, Zelenyuk Valentin, Stochastic FDH/DEA estimators for frontier analysis, 10.1007/s11123-010-0170-6
  43. Stevenson Rodney E., Likelihood functions for generalized stochastic frontier estimation, 10.1016/0304-4076(80)90042-1
  44. Titterington DM (1980) A comparative study of kernel-based density estimates for categorical data. Technometrics 22:259268
  45. Wang MC, Van Ryzin J (1981) A class of smooth estimators for discrete distributions. Biometrika 68:301309
  46. Ziegelmann Flavio A., NONPARAMETRIC ESTIMATION OF VOLATILITY FUNCTIONS: THE LOCAL EXPONENTIAL ESTIMATOR, 10.1017/s026646660218409x
  47. Farrell M. J., The Measurement of Productive Efficiency, 10.2307/2343100