
UIPLML: Pattern-based Engineering of User
Interfaces of Multi-Platform Systems

Nguyen Thanh-Diane, Jean Vanderdonckt
Louvain School of Management
Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
{thanh-diane.nguyen,jean.vanderdonckt}@uclouvain.be

Ahmed Seffah
Innovation and Software, School of Business and Manage-

ment, Lappeenranta University of Technology
P.O.Box 20 – FI-53851 Lappeenranta (Finland)

ahmed.seffah@lut.fi

Abstract— Information systems become more accessible as a
service offered to anybody, anywhere, at any time, via almost any
device and computing platform. The continuous growth and the
heterogeneity of these devices induce diverse user experiences
depending on the device and challenge designers to creating
methods and tools for engineering usable, yet accessible, infor-
mation systems. Instead of repeating a similar development life
cycle, design patterns concentrate design solutions with embed-
ded usability and accessibility. Once a pattern is selected, the de-
veloper is responsible for adequately program the pattern code,
which is a tedious and error-prone task. In order to address these
challenges, this paper presents UIPLML (User Interface Pattern
Language Markup Language), a XML-compliant markup lan-
guage for defining user interface patterns for multiple contexts
of use, e.g., for different users carrying out a task on different de-
vices in different environments. A meta-model with new expres-
siveness enables multi-facet pattern matching. To validate it, four
UIPLML pattern databases have been created: a base of 237 en-
tries for multi-platform systems, a base of 42 entries for context-
aware interfaces, a base of 10 entries for culturally-aware inter-
faces, and a base of 52 entries for accessibility. The master/detail
pattern is in particular supported by a software for generative
pattern-based approach where application parameters and con-
textual data govern automated user interface XML creation
which, in turns, generates code for multi-platform information
systems.

Keywords— Design pattern; generative pattern; multi-context
information system, multi-platform; pattern language; user inter-
face description language, user interface pattern

I. INTRODUCTION
Nowadays, end users choose how, when, and where they

would like to carry out their interactive task: they are no longer
tied to a particular device or environment. They benefit from
Multi-context User Interfaces (MUIs), which are User Interfac-
es (UIs) attached to an interactive information system or ser-
vice for multiple contexts of use [1,2], which is hereby referred
to as a user, a device, and an environment [3]. However, MUIs
designers and developers face various challenges, such as a
technical development and components to accommodate dif-
ferent types of users [2], devices/platforms [4,5], and environ-
ments [6] that result into context-aware systems.

UI patterns express a solution to a common UI design
problem in a generic way that provides designers and develop-
ers with practical guidance on solution finding and application
[2,7,8]. UI patterns set up the best design practices from dis-
tilled experience from real life. A pattern language [2] formal-
izes the definition and description of a pattern with structured
semantic and syntax [9]. It helps the pattern users in under-
standing them as well as supporting the pattern-based design.

Several issues remain open for current UI patterns lan-
guages as a way to represent and use patterns: although signifi-
cant efforts, such as PLML [10], have been devoted to uni-
formly document UI patterns [11], no standard form has been
accepted so far and widely used [12], patterns are delivered
mostly in narrative text (descriptive patterns), there is no true
validation (patterns are provided “as is”) and no software for
supporting their right application (no generative patterns) [13],
the guidance for applying them remains on low level of ab-
straction [14] with a limited usability approach [15] or is too
specialized to one level of abstraction, their interrelationships
are static and not context-oriented because they are expressed
independently of any context of use (which is defined as user,
platform, and environment [3,16]), thus making them totally
inappropriate for MUIs. Some formal reasoning [17] and
methodology should guide their creation and their pattern lan-
guages, which is not the case [2]. More challenges in defining,
using UI patterns are discussed in [18].

In order to address these shortcomings, this paper provides
a framework and a methodology for defining and using MUI
patterns based on UIPLML (User Interface Pattern Language
Markup Language), a XML-compliant markup language defin-
ing explicitly a reference to any applicable context of use, such
as for which user, for which task, for which device or platform,
and in which environment. For this purpose, a meta-model de-
fines the semantics of this pattern language and a XML schema
is derived from this meta-model to specify the syntax of
UIPLML. In addition to providing an explicit link to applicable
contexts of use, UIPLML enables creating a MUI by linking
the pattern to a multi-level definition in UsiXML (User Inter-
face eXtensible Markup Language), a User Interface Descrip-
tion Language (UIDL) that enables the semi-automated genera-
tion of MUI code [19], here considered in HTML5.

Since validation matters [15], an application of this frame-
work is demonstrated through four databases of UIPLML pat-
terns for different MUI dimensions. Instead of relying on a UI
peculiar pattern language, UIPLML enables the creation of dif-
ferent pattern databases which could be related to each other
and be complemented. UIPLML’s separation of concerns facil-
itates the introduction of a new UI pattern in the collection.

This paper is structured as follows: Section 2 discusses the
gap existing between the various MUI stakeholders in the liter-
ature: author (documentation), UI designer (quality), and soft-
ware developer (implementation). Section 3 explains a meta-
model for MUI design patterns into abstraction models and the
language resulting of it. Section 4 shows the approach on 4 pat-
tern databases and a software to support pattern description and
its application and Section 5 presents the conclusion.

IEEE RCIS 2016

273

II. STATE OF THE ART
A. User Interface Patterns

Alexander introduced a pattern language to encapsulate in a
common structure real world elements in order to describe
good design practices to be reused in other similar cases, thus
simplifying the problem solving part of development [20]. The
Gang-of-Four later on introduced design patterns for object-
oriented software development based on a format [21] covering
behaviour, functional and structural aspects, such as in Coad-
Nprth-Mayfield pattern collection [22]. Similarly, several UI
pattern collections –representative examples being Tidwell’s
“patterns for effective interaction design” [23], van Welie’s de-
sign patterns [24], pattern-based approaches of Borchers [26],
Granlund [26], Pemberton [27], Perrins [28], Portland [29], Co-
ram [30]– have been progressively introduced through simulta-
neous, yet uncoordinated, efforts that typically reflect different
viewpoints: the UI pattern author/user (documentation), the UI
designer (quality), and the software developer (implementa-
tion). These viewpoints define fundamental properties required
by a UI pattern to be effectively used [2,8,23,31,32,33]:

x Provide a predefined structure for the implementation.
x Document encapsulation, capture detail, existing, well-

proven design experience.
x Contain a local, self-standing process prescription (realiza-

tion), generativity (capacity of automation) characteristic.
x Provide a homogeneous description, common semantic and

syntaxes of UI pattern description.
x Identify reusable properties for software development.
x Separate functional from non-functional design aspects.
x Guide its implementation via a high level of abstraction.
x Deal with complexity of software in providing information

implementation.
x Maintain some equilibrium between forces and constraints

elements (minimization conflict between both elements).

UI pattern collections fall into three categories (Table I):
pattern catalogues, which deliver lists of patterns in fixed col-
lection without any evolution, typically in a book or a web site,
pattern managers, offering a method-template approach to cre-
ate, edit, delete patterns), and pattern-based tools, which pro-
vide some support in applying a selected pattern, typically
through code generation. Table I compares UI pattern collec-
tion against two properties [13]: descriptivity refers to the UI
pattern’s ability to fully describe the conditions of application
and the provided solution and is decomposed into expressivity
(levels of details of the description) and generality (to which
extent is this description generalizable); generativity refers to
the UI pattern’s ability to support pattern application, in partic-
ular through code generation and is decomposed into coverage
(what is the scope covered by the support) and genericity (to
which extent is this application generic enough to support
MUIs). Table I compares UI patterns according to Harvey’s
Balls: ‘◔’ when some limited elements, directives, examples
exist, but no particular context is considered,‘◐’ when at least
one context is specified, ‘◕’ when more than one context is
considered, ‘●’ when patterns are described with two or more
languages for many contexts of use, thus supporting MUIs. An
empty field means either that no support exists or information
is unavailable regarding this criteria in the literature.

Pattern collection Descriptivity Generativity
Expres
pres-
sivity

Gen-
erality

Cover-
age

Ge-
neric-

ity

Pa
tte

rn

ca
ta

-
lo

gu
es

 Tidwell [23] ● ● ◔ ◔
van Welie [24] ● ● ◔
van Duyne [34] ● ◑ ◑

Pa
tte

rn

m
an

ag
-

er
s

Borchers [25] ● ●
Pemberton [27] ◑ ◑ ◑
Coram [30] ● ● ◑

Pa
t-

te
rn

to

ol
s Molina [35] ● ◑ ● ●

Henninger [36] ◑ ◑ ◑
TABLE I. COMPARISON OF PATTERN COLLECTIONS.

Most UI patterns do contain information enough about the
pattern itself (expressivity matters), but the level with which
this description could be generalized to other cases is more or
less supported (generality). Regarding generativity, only few
patterns consider multiple contexts of use (coverage) and,
when they do, their coverage is somewhat limited and their ca-
pability to actually generate a MUI is almost non-existent (ge-
nericity). One notable exception is JUSTUI [35], where a
Presentation Model contains a set of conceptual patterns, which
enable the design to model a MUI consisting of interaction
units resulting from the application of patterns. The Presenta-
tion model is context-independent, but enables the developer to
automatically generate UI code for three platforms: HTML, Ja-
va, and C++. A user model is currently being added in order to
expand application to various users in their environments.
B. Comparison of UI patterns descriptions

The major UI pattern collections have been subject to a sys-
tematic analysis according to an analysis grid reported in An-
nexe1, allowing to identify the following shortcomings [11,31]:
S1. Lack of consistency. Collections deliver patterns according

to different sets of attributes, links based on different tax-
onomies, and illustrations and application conditions with a
varying level of details, thus making them inconsistent.
Some attributes are revealed as being homonyms, homo-
graphs across collections. There has been some effort in
proposing a consistent format, like PLML [10], but it is still
inconsistently used, probably because of its incompleteness.
van Welie [24] does not link any pattern, the “Gang of
four” [37] and Portland [29] have only a related pattern.

S2. Lack of structure. Collections primarily present patterns
as a flat list of attributes, with application conditions scat-
tered across these attributes. When some structure emerges,
it is not uniform. Tidwell presents a collection according to
a question/answer allowing a quick understanding of the
contents, but it is the only one. No conceptual model [23].

S3. Lack of implementation information. Conditions for ap-
plying a pattern are sometimes omitted, sometimes partially
provided. Moreover, when such conditions are explained,
the link with implementation is almost non-existent. Tid-
well offers attributes "How" and "Figure" with regard to the
information on the implementation; van Welie [24] has the
attribute “How” to pilot the developer in implementing the
pattern with example and explanation. The "Gang of four"
[37] gives one concrete pattern implementation with a class
diagrams while Portland [29] gives more freedom to users
but defines a “story” in which they may find themselves.

IEEE RCIS 2016

274

Fig. 1. The meta-model of UI patterns as described in UIPLML.

S4. Lack of pattern evaluation. Most pattern languages and
collections do not provide any evidence regarding if the so-
lutions are efficient in solving the identified problems. van
Welie [24] enables its users to post comments on UI pattern
usage, but this is far away from an impact factor. For a bet-
ter assessment, some pattern languages miss code exam-
ples-implementation like UsiPXML [39].

S5. Limitation of contextual coverage. Most collections re-
strict the context of use (which covers user, platform, and
environment) to solely the device or platform. In doing so,
they usually focus on one device at a time [21], therefore
providing little or no support to MUIs. The description of
these contexts is mostly narrative and unstructured.

S6. Limited software support. Little or no software support
exist for most collections [25,27,30], neither in searching
for a pattern nor for matching one and applying one to a
particular context of use. A notable exception is [35], which
enables the designer to create a UI model based on patterns

that lead to a MUI for three contexts of use.
S7. Specific pattern examples. While UI patterns are assumed

to deliver a solution that is independent of any context of
use, including any interaction modality, nearly all collec-
tions provide examples expressed as a Graphical User Inter-
face (GUI) for a specific operating system or rendered in a
specific environment that is not straightforward to transfer
to another one. No other expression of a pattern exist, for
instance at a higher level of abstraction than GUI [30,40].

S8. Limited usability consideration. Applying a pattern to a
particular case study poses the question of deciding be-
tween various design options, thus leading to a usable solu-
tion with varying degree of quality. Most collections pro-
vide little or no information about the potential usability or
user experience resulting from applying a pattern [14]. For
instance, the usability approach of PaMGIS Patten Descrip-
tion Language (PPSL) (including PLML v1.1 and based on
[3]) is limited by the use of comments like feedback.

IEEE RCIS 2016

275

In order to address these shortcomings, the following re-
quirements have been elicited, also based on [15,39]:
R1. Structured and consistent conceptual model for MUIs.
R2. Explicit consideration of context of use for context-

awareness and usability in pattern application.
R3. Integration of patterns in the whole development process.
R4. Consolidation of methods and techniques via software.
R5. Validation of patterns with an up-to-date usability guide.

III. USER INTERFACE PATTERN MARKUP LANGUAGE
A. UIPLML Description

In order to address requirements R1-R3 primarily and
somewhat R5, Fig. 1 depicts the meta-model of User Interface
Pattern Language Markup Language (UIPLML) represented as
a UML 2.0 class diagram. This meta-model has been obtained
by compiling all attributes from existing collections (Appendic
I), but also significantly expanded several branches required for
MUI development. The main aspects of this meta-model are
hereby introduced, defined, and discussed.

The UIPattern class is firstly enriched by a complete SWOT
analysis in which Strengths and Weaknesses are internal attrib-
utes referring to the usability quality properties that are en-
sured, respectively endangered by the pattern (here, ergonomic
criteria are used [12]), whereas Opportunities and Threats are
external attributes addressing the risks of pattern application.
For example, the screen size may become a constraint in apply-
ing the pattern, thus representing a threat. The contextProblem
attribute provides a reference to a context of use in which the
pattern could be applied, where the contexts consists of a refer-
ence to a user model, a device model, and an environment
model, while the resultingContext attribute describes the final
context in which the MUI will be obtained. The levelOfEvi-
dence attribute characterizes a scale of empirical evidence
ranging from 1 (no evidence is provided in applying this pat-
tern) to 7 (several different sources concur to conclude that this
pattern has some impact on quality of MUIs). The rationale at-
tribute justifies the pattern by providing a link to references
where the pattern comes from; the rationale can range from
‘weak’ when a pattern is suggested by a person to ‘strong’
when a pattern is officially pushed. The implementation attrib-
ute authorizes three different approaches for implementing a
pattern: (i) provide a code fragment, which is only possible for
one context at a time and not for all MUIs, (ii) describe the pat-
tern implementation using a high level notation, and (iii) pro-
vide a reference to one or many UIModels that describe the
pattern at 4 levels of abstraction [3]:

1. A Task Model is a hierarchical decomposition of a global
task, with constraints expressed on and between the subtasks.
A notation exists to express a task model. The Domain Mod-
el completes the task model with a presentation of important
entities of the particular application domain together with
their attributes, methods and relationships. A domain model
is typically expressed as a UML 2.0 class diagram.

2. The Abstract User Interface (AUI) model specifies a user in-
terface independently of any interaction modality (we do not
know yet whether it will be graphical, tactile, gestural, vocal,
or multimodal in the future) and any technological space.

3. The Concrete User Interface (CUI) model specifies a user
interface independently of any technological space, but for a
given interaction modality. That means to define widgets
layout and interface navigation independent of any compu-
ting device in case of a graphical user interface (GUI) or to
define vocal elements in case of a vocal interface.

4. The Final User Interface (FUI) consists of source code, or a
code skeleton in any programming (e.g., C++) or markup
language (e.g. HTML5), which can be interpreted/compiled.

The AUI model represents a unique opportunity to describe
a pattern independently of any context of use by definition,
which is compliant with the W3C recommendation (www.w3.
org/TR/abstract-ui/). Each UIPattern could be further decom-
posed into sub-patterns or linked to other patterns according to
the following taxonomy of links (which is unique to UIPLML):
isRelatedTo, ContradictsWith, isMoreImportantThan, isLessIm-
portantThan, ShouldBeConsideredWith, MustBeConsidered-
With, CouldBeConsideredWith (“MOSCOW” requirement).
When appropriate, a UIPattern could be documented with an
explicit link indicating which organisation, if any, is recom-
mending, for instance a software vendor (e.g., Microsoft style
guide, Google Material), a standard firm (e.g., ISO9241), a
governmental agency (e.g., ANSI HFES) or any other corpo-
rate environment (e.g., a corporate style guide).

A UIPattern may be illustrated by copious examples which
are themselves structured and attached to any possible domain
of human activity. An activity domain is a set of tasks that are
relevant to a specific context and is characterized by a list of
EU NACE codes (Statistical Classification of Economic Activi-
ties in the European Community), e.g., Economics, Manufac-
turing. The three values for the implementation are thus cov-
ered: (i) by code: the link to a FUI gives access to a code frag-
ment in particular language that may serve as a template or
skeleton –note that this remains a manual approach, (ii) by
model searching: the links to the various models enables the
designer to look for patterns satisfying some conditions im-
posed on these models, and (iii) by multi-model: several mod-
els could be combined in the pattern. The MappingModel estab-
lishes mappings between models involved in a pattern, which
may be mappings from T&C level downwards to FUI or trans-
formations, such as Model-2-Model transformation from T&C
to AUI, AUI to CUI, and Model-2-Code from CUI to FUI. Any
UIModel may be subject to a configuration model enabling the
pattern writer to maintain multiple versions of a pattern evolv-
ing over time, with different versions introduced by different
authors.
B. UIPLML Syntax
 To date, UIPLML is the only UI pattern language express-
ing MUIs in a way that is compliant with W3C recommenda-
tions on CRF, abstract UI, and configuration models. The
UML 2.0 class diagram of Fig. 1 defines the semantics of
UIPLML. It has been transformed into both a XML Schema
for XML description and a W3C OWL 2.0 ontology. In this
way, any software tool that is compliant with this schema or
ontology may exchange patterns according to a standard for-
mat, thus addressing requirements R4-R5.

IEEE RCIS 2016

276

Fig. 2. Pattern visualization through an expandable/collapsible tree.

C. UIPLML visualization
 Visualizing a pattern at once is impossible both from a ma-
chine screen viewpoint and from a human cognitive load
viewpoint. Based on the UIPLM syntax, the categories, sub-
categories, attributes and their assigned values could be
browsed according to an expandable/collapsible tree (Fig. 2).
This tree is automatically produced from the XML-compliant
description of a UIPLML pattern. Note in Fig. 2 that methods
are also attached to a pattern depending on its status: for in-
stance, a pattern promoted by an official standard cannot be
modified nor deleted, but an instance could be created that be-
comes another pattern with a dependency link.

IV. APPLICATION OF UIPLML
A. UIPLML Patterns databases
In order to address requirements R4-R5 primarily with some
impact on other requirements R1-R3, four UIPLML Patterns
databases have been created as reported in Table II. Each pat-
tern database is characterized by a name, an identifier, a main
author (although other authors may edit patterns depending on
their rights), and a description. The UIPLML patterns database
system consist of two different pieces of software:
1. A back-office, representing the editor viewpoint (Fig. 3), is

aimed at patterns authors and writers for them to create, re-
trieve, update, and delete patterns and patterns database.
This back-office is implemented as a Java Web Start appli-
cation (with .jnlp suffix) that can be downloaded from the
web site and installed on the pattern writer/author work-
station. After authentication, the writer is enable to edit any
pattern database depending on the rights assigned. Each
pattern database is managed by Atoms®, a multi-platform
database management system. A pattern could be created
first and then linked to other resources, such as users, plat-
forms and devices, tasks, environments, activity domains,
examples, links with other patterns (Fig. 3) or the other
way around. The editor could first create individual re-
sources such as users, platforms, and environments, and
then link each of them to a particularly applicable pattern.
At any time each pattern could be assigned to a status: in-
active incomplete, inactive complete, and active. By drag
and drop, the write may change the status of any pattern so
as to make it visible for the second part. All patterns are
stored in Atoms as XML documents which are compliant
with the UIPLML syntax (Sub-section III.B).

2. A front-office, representing the end user viewpoint (Fig. 4),
is aimed at patterns users for them to search for patterns, to
apply pattern matching and use patterns databases. This
front-office is implemented as a responsive web site in
PHP and JavaScript that accesses the Atoms®-managed
pattern databases. While the pattern writer may move a
pattern from one database to another, the pattern user can
access only one pattern database at a time.

IEEE RCIS 2016

277

Database Entries Purpose
MUI patterns 237 UI patterns for multi-platform

(smartphone, tablet, notebook, PC,
PocketPC, PDA) structured into 8 cate-
gories (windowing, home, menu, con-
tents, actions, forms, help, specific)

Context-aware
patterns

42 UI patterns for context-aware user in-
terfaces

Culture-aware
patterns

10 UI patterns for user interfaces to be lo-
calized/globalize for different lan-
guages, culture

Accessibility
patterns

51 UI patterns addressing accessibility of
graphical user interfaces depending on
user

TABLE II. UIPLML PATTERNS DATABASES.

Fig. 3. A UI pattern in editing mode.

Fig. 4. A UI pattern in viewing/browsing mode.

B. UIPLML Pattern matching
Based on the meta-model defined in Fig. 1, pattern matching
could be ensured by querying a UIPLML pattern database ac-
cording to the following schemes:
x Single-criteria single-class searching: a query could be is-

sued on any attribute of the UIPattern class on one database
at a time. For instance, search for all patterns having a par-
ticular keyword, a particular string in the name (e.g., all pat-
terns for lists), having a high level of evidence.

x Single criteria multi-class searching: a query could be is-
sued by satisfying a constraint on a relationship between
UIPattern and a related class. For instance, search for all pat-
terns having “compatibility” as an ergonomic criteria for
opportunities, search for all patterns documented in a partic-
ular bibliographical reference (useful for standard compli-
ance), search for all patterns supported by examples in a
particular domain of activity (e.g., all examples of forms for
business administration), search for all patterns submitted
by a particular author, documented in a given organisation.

x Multi-criteria multi-class searching: a query could be issued
in order to satisfy a combination of the two aforementioned
searching. For instance, search for all patterns that are em-
pirically validated (having a high level of evidence) for on-
line marketing domain (with a NACE code for marketing).

x Full-text searching: a query could be issued to perform a
full-text searching based on a string on the complete UIPat-
tern description. In this case, all attributes are considered for
the search.

x Single-model searching: a query could be issued based on a
particular model linked to patterns. For instance, give me all
patterns for task model manipulating CRUDS methods (i.e.,
create, read, update, delete, search), give me all available
patterns for a particular platform, say a smartphone. For the
moment, only attributes of the models could be searched. A
natural extension of this search would be the capability to
search for models based on their structure and/or relation-
ships, but this goes beyond the scope of this paper.

x Multi-model searching: a query could be issued based on
properties of two or more models at once, possibly bound to
each other by a mapping. Again, only attributes of the mod-
els and the mapping are supported. For instance, give me all
patterns for a particular user carrying out a task on a specific
device or independently of any platform/device.

C. UIPLML Master/Details Pattern
In order to explicitly address requirement R4 on software sup-
port, this section will focus on one particular design pattern
that is particularly suitable for software support and for code
generation. We selected the Master/Details (M/D) pattern be-
cause it is probably one of the most frequently used pattern,
which exhibits many variations for MUIs, depending on con-
straints imposed by the context of use. A M/D pattern is typi-
cally selected to support a focus+context interactive approach
in which a list of items, called master, is firstly displayed to
provide an initial context, from which a particular item is se-
lected that is subject for a detailed display, called details. The
details need to have a usable navigation and to follow some us-

IEEE RCIS 2016

278

ability guidelines in order to respect users’ requirements and to
have an appropriate user experience. Here is an excerpt of the
M/D pattern according to UIPLML:
<PatternName>: Master/Details
<PatternAlias>: Master/Slave, Director/Details
<Problem>: The user has to search in a list and select an item to
have more details. A set of information units linked or not by a
relationship has to be presented to the user. In this last scenario
the master interaction unit determines information that details
interaction unit will show.
<PatternSynopsis>:displays a master list and the details for the
currently selected item.
<Classification/Template>: Structural/object centric
<Solution>: Perform a composed presentation in which master
and detail data are shown in a synchronized way. In the master
unit, its object guide and trigger the update in the details unit.
Detail unit presentation is provided while Master unit presenta-
tion is changing.
<Restriction>: The constraint is to have synchronized infor-
mation between the master information units and detail infor-
mation units.
<Forces>: This pattern is used in numerous situations and con-
texts. The scenario of this pattern allows simplifying the user
task. Indeed, navigation is decreased to get specific infor-
mation. Moreover, information is maintained synchronized be-
tween the master and details units.
<Weaknesses>: The size of screen can discourage the presenta-
tion of this pattern. Less information can be shown at the same
time on a screen.
<Applicability>: The M/D pattern is used when we need to inter-
act with several objects aggregated.
<Structure>: In the case of an aggregated relationship, the mas-
ter unit is the head element of details unit.
<Collaborations>: Objects can operate though their aggregated
relationship or attributes.
<Participants>: One or two instances with an aggregated rela-
tionship. It is the presentation and instance interaction unit
linked in the navigation with the M/D pattern.
<Known Uses>: Commercial system can use this pattern to
show the case Invoice/Line.
<Consequences>: Need to adapt this pattern on different plat-
forms. Knowledge about these devices is required.
<PatternLink>: Object presentation, Population unit, Instance
Interaction Unit, Display Form, Table List Pattern
<Rationale>: Provide a presentation to reduce several navigation
steps and to simplify the user task. Users need to interact with
several objects aggregated or not. The scenario offered by
M/D pattern allows getting details information aligned with its
master component. Moreover, the purpose of this pattern is to
make explicit information related to an instance.
<Context of use>: All type of users can use this pattern. All en-
vironments such as business environment can get this pattern
and adapt it. For instance, we can use this pattern to show the
cases Project/Employees or Invoice/Lines.
<Implementation>: The issue about using a unity class or aggre-
gated classes is necessary before implementing this pattern.
<Threats>: Many systems offer the possibility to create this pat-

tern into final user interfaces. The risk is to lack of graphical
customization and interaction.
<Opportunities>: M/D pattern is frequently used in the real life.
Different tools offer the possibility to no-expert developer
(with few implementation software knowledge) to use template
to perform it on specific operating system.
<levelOfEvidence>:7 (expert+validation description)

D. Task model for M/D pattern
A task model is a description of the tasks that a user will

be able to accomplish while interacting with the system [14].
This description consists of a hierarchical decomposition of a
global task recursively into sub-tasks, with constraints ex-
pressed on and between the sub-tasks. Two task models have
been specified and encoded in UsiXML for the M/D pattern:

1. A task model (Fig. 5) in which a collection of objects (e.g.,
a list of cars) belonging to the same class (e.g., a CAR
class) is subject to browsing first and each time one or
many objects are selected, editing of respective attributes
(e.g., changing the availability of a set of cars) and execu-
tion of respective methods could be ensured (e.g., a set of
cars is booked at the same time for a company). A choice
between sub-tasks is graphically denoted by a ‘[]’ tem-
poral operator, while a ‘|||” represents parallelism.

2. A task model (Fig. 6) in which the master is first manipu-
lated as a collection of objects (e.g., a list of cars), and each
detail (e.g., each car) is then subject to browsing, editing of
attributes and/or executing related methods. A sequence
with information passing is represented by “[]>>”.

Fig. 5. Master/Details pattern defined by a unity class in the Task Model.

Fig. 6. Master/Details pattern defined by an aggregation relationship.

IEEE RCIS 2016

279

The second task model of the M/D pattern is related with an
aggregation relationship between two different instances in a
conceptual model [21]: “this pattern can be easily mapped to a
many-to-one relation schema used within a database design
[29].” For instance, an Employee class contains several attrib-
utes, some simple such as Name, LastName and some com-
pound ones like Address, which could be further subject to an-
other application of a M/D pattern since this repetitive attribute
is decomposed into elements such as street, number, PO Box,
zip code, city, and country. This could be mapped in an aggre-
gation relationship between two distinct entities if the cardi-
nality of the relation from master class to details class is 0..n.

Fig. 7. Two nodes of UsiMAD decision tree: (a) a question with one answer

and a sub-tree with further questions; (b) a question with one answer and
two sub-trees with further questions.

E. UsiMAD for supporting M/D pattern

 UsiMAD (http://usimad.alwaysdata.net/tree) is aimed at
supporting the designer in exploring alternative MUI designs
for the same M/D pattern by assigning different values to var-
ious design options and by immediately previewing (with Bal-
samiq mockups [5]) how the future MUI corresponding to the-
se assigned options will look like. UsiMAD then enables the
developer to save the resulting MUI pattern application into a
XML file that is then imported in the UsiXML software suite
for HTML5 code generation, which is available mainly for
three computing platforms or devices: smartphone, tablet, and
desktop or all at once through responsive design HTML.
 Since UsiMAD is equipped with a decision tree where each
node represents a question (e.g., how would like to present the
details of a M/D?) and the branches represent the possible an-
swers to this question (Fig. 7a,b). When an answer is consid-
ered final, the decision tree has reached a leaf node (one in
both Fig. 7a and 7b); when an answer is not considered final,
the decision tree then branches to the sub-tree corresponding
to the selected answer (one sub-tree in Fig. 7a and two sub-
trees in Fig.7b) and so forth until a final conclusion is reached.

Fig. 8 graphically depicts a portion of UsiMAD’s decision
tree showing options for the M/D pattern. Note that questions
asked in this decision tree are located at AUI level since there
no reference to any interaction modality nor any technological
space like a particular platform. Returning to our scenario on
applying a M/D pattern to a range of cars, a designer may first
decide the amount of items to be displayed simultaneously:
one item of the collection at a time (i.e., cars one by one),
many items in a group (i.e., a partial list of cars), or all items
resulting from the search at once (i.e., a complete list of cars).

Fig. 8. A portion of UsiMAD decision tree for M/D pattern.

Fig. 9. One M/D pattern application in UsiMAD.

•extended task list
•reduced task list
•tabbed list
•single expansion list

Do you want the
data to be
displayed as

•Combined
•Separated

If the data are
combined, must
they be displayed

•One by one
•Many at
once
•All at once

If the data are
combined, must
they be displayed

•One by one
•Many at once
•All at once

If the data are
combined one
by one must
they be
displayed like

•extended task list
•reduced task list
•tabbed list
•single expansion list

If the data re
combined all at
once must they
be displayed
like

•Separated list
•Grouped list
•Bulleted list
•Ordered list
•Spaced list
•Tables

If the data are
combined one
by one must
they be
displayed like

Pop up

Pop up

Bulleted list

Ordered list

Spaced list

Tables

Grouped list

Separated list

Multiple
expansion list

Single
expansion list

Tabbed list

Reduced task list

Extended task list

One at
once

Many
at once

All at
once

Combined

IEEE RCIS 2016

280

Fig. 10. Another M/D pattern application in UsiMAD.

Fig. 11a UsiMAD Usability knowledge as rationale behind the M/D pattern.

Fig. 11.b UsiMAD Usability knowledge as rationale behind the M/D pattern

in validation view

Depending on this choice, UsiMAD’s decision tree directs
the designer to a new question: how attributes and methods of
the item should be conveyed, here in a single expansion list,
and so forth. Depending on the specifications of the user and
the device/platform, UsiMAD may suggest an appropriate
value based on usability knowledge available until a final node
of the decision tree is reached. Fig. 9, respectively Fig. 10, re-
produces two final situations, one for a smartphone and one
for a tablet.

Fig. 11.a and b. reproduce a situation where the designer is
requesting explanation of the recommendation suggested by
UsiMAD. For this purpose, a section of various categories of
usability guidelines (here called ergonomic rules [42]) is
opened that is further expanded to discover underlying guide-
lines that are either respected (a green check box is displayed)
or not (a red cross-as a result of the parameters selection). If
the designer becomes aware of the usability respected or not
by this parameter selection, another selection may be operated
as depicted in the end of Fig. 11 for another selection. Once
design options have been decided (note that default values are
automatically assigned by UsiMAD), a transition from AUI to
CUI, and from CUI level to FUI could be achieved. The cross-

device pattern is available for three targets: in HTML5 for
both desktop and mobile, in a responsive version, in Android
for smartphones and tablets, and in Objective-C for iOS de-
vices.

A Model Voyageur (see http://sites.uclouvain.be/mbui/ for
the full case study) enables the designer and the developer to
navigate through the 4 CRF levels of abstraction [3] starting
from a same task model (based on Fig. 5 or 6) and for a pre-
defined domain model. In this on-line version, MUIs have
been produced for different targets, depending on various us-
ers and devices. Any project for a particular case could be
added, edited, or removed from this library. Another library
could be created for another problem, with different task and
domain models. Each time a branch is expanded, possible val-
ues for decided design options are visualized and the branch is
further expanded to the subsequent levels, thus facilitating
how decided design options may affect the final user interface.

V. CONCLUSION
This paper presented the following contributions:

x A conceptual contribution: a meta-model for expressing design
patterns for multi-context user interfaces (Fig. 1), which goes
beyond existing state-of-the-art pattern language for mono- or
multi-context user interfaces, based on a systematic literature
review comparing the expressiveness of existing pattern collec-
tions (Appendix I). For this comparison, a series of 8 shortcom-
ings has been introduced and discussed in order to elicit 5 main
requirements driving the usable a MUI pattern language. From
this meta-model, UIPLML has been defined as a XML-
compliant markup language for defining multi-context UI pat-
terns, e.g., for different users carrying out a task on different
devices in different physical environments.

x A practical contribution: UIPLML is available as a XML
schema and as a W3C OWL ontology for importing and export-
ing MUI patterns across various collections of MUI patterns,
provided that they adhere to the same format.

x A methodological contribution: how to express a MUI pattern
according to the provided meta-model with explicit reference to
various dimensions such as: user, platform or device, environ-
ment, and UIModel with different levels of abstraction which
are the one recommended by W3C, thus making it compliant
with the W3C MBUID [16].

x A support of the method and language: four MUI pattern data-
bases have been created (respectively, with 237 entries for mul-
ti-platform systems, 42 entries for context-aware interfaces, 10
entries for culturally-aware interfaces, and 52 entries for acces-
sibility) and incorporated into a UIPLML software consisting of
a front-end and a back-office for MUI pattern management and
usage, in particular providing 6 major mechanisms for MUI pat-
tern matching. One particular pattern, i.e. the master/detail, has
been subject to the implementation of UsiMAD, a software for
supporting the designer and the developer in choosing appropri-
ate values for design options collected for this pattern.

Future avenue of this work will focus on revisiting other col-
lections of software design pattern, especially Coad, North, and
Mayfield [22], in order to come up with a decision tree that is
similar to the M/D pattern, also with MUI generation preview.

IEEE RCIS 2016

281

REFERENCES
[1] D. Malandrino, F. Mazzoni, D. Riboni, C. Bettini, M. Colajanni, and V.

Scarano, “MIMOSA: context-aware adaptation for ubiquitous web ac-
cess,” Personal Ubiquitous Comp., vol. 4, no. 4, pp. 301-320, May 2010.

[2] A. Seffah, “Patterns of HCI design and HCI design of patterns - Bridg-
ing HCI design and model-driven software engineering,” Human Com-
puter Interaction Series, Berlin: Springer, 2015.

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J.
Vanderdonckt, “A Unifying Reference Framework for Multi-Target Us-
er Interfaces,” Int. with computers, vol. 15, no. 3, pp. 289-308, 2003.

[4] E.G. Nilsson, “Design patterns for user interface for mobile applica-
tions,” Adv. in Engineering Software, vol. 40, no. 12, pp. 1318-1328,
Dec. 2009.

[5] S. Geiger-Prat, B. Marín, S. España, G. Giachetti, “A GUI Modeling
Language for Mobile Applications,” Proc. of 9th IEEE Int. Conf. on Re-
search Challenges in Information Science RCIS’2015 (Athens, May 13-
15, 2015), Piscataway: IEEE Press, pp. 76-87, 2015.

[6] K. Breiner, M. Seissler, G. Meixner, P. Forbrig, A. Seffah, and K.
Klöckner, “PEICS: towards HCI patterns into engineering of interactive
systems,” Proc. of the 1st Int. Workshop on Pattern-Driven Engineering
of Interactive Computing Systems PEICS’2010 (Berlin, June 20, 2010),
New York: ACM Press, pp. 1-3, 2010.

[7] Ch. Märtin, Ch. Herdin, and J. Engel, “Patterns and Models for Auto-
mated User Interface Construction - In Search of the Missing Links,” in
Proc. of 15th Int. Conf. on Human-Computer Interaction: Human-
Centred Design Approaches, Methods, Tools, and Environments HCI In-
ternational’2013 (Las Vegas), M. Kurosu, Ed., Lecture Notes in Com-
puter Science, vol. 8004, Berlin: Springer, pp. 401-410, 2013.

[8] E. Folmer, M. van Welie, Jand J. Bosch, “Bridging patterns: An ap-
proach to bridge gaps between SE and HCI,” Information & Software
Technology, vol. 48, no. 2, pp.69-89, 2006.

[9] S. Montero, P. Díaz, and I. Aedo, “A Semantic Representation for Do-
main-Specific Patterns,” in Proc. of Int. Symposium on Meta-
Informatics MIS’2004 (Salzburg), Springer, pp. 129-140, 2004.

[10] S. Fincher, PLML: Pattern Language Markup Language, University of
Kent, February 2006, accessible at https://www.cs.kent.ac.uk/people/
staff/saf/patterns/plml.html

[11] N. Li, Q. Hua, S. Wang, K. Yu, and L. Wang, “Research on a pattern-
based user interface development method,” in Proc. of 7th Int. Conf. on
Intelligent Human-Machine Systems and Cybernetics IHMSC’2015
(Hangzhou, August 26-27, 2015), IEEE Press, pp. 443-447, 2015.

[12] J. Deng, E. Kemp, and E-G.Todd, “Focusing on a standard pattern form:
the development and evaluation of MUIP,” in Proc. of the 7th ACM Int.
Conf. on Computer-Human Interaction: design centred HCI
CHINZ’2006 (Christchurch), New York: ACM Press, pp. 83-90, 2006.

[13] J. Vanderdonckt and F. Simarro, “Generative pattern-based design of
user interfaces,” in Proc. of the 1st Int. Workshop on Pattern-Driven En-
gineering of Interactive Computing Systems PEICS’2010 (Berlin, June
20, 2010), New York: ACM Press, pp. 12-19, 2010.

[14] F. Radeke and P. Forbrig, “Patterns in task-based modeling of user inter-
faces,” in Proc. of 6th Int. workshop on task models and diagrams for us-
er interface design TAMODIA’2007 (Toulouse, November 7-9, 2007),
M. Winckler, P. Johnson, Ph. Palanque, Eds., Lecture Notes in Comput-
er Science, vol. 4849, Berlin: Springer, pp. 184-197, 2007.

[15] Y. Ormeño, J.I. Panach, N. Condori-Fernández, and O. Pastor, “Towards
a proposal to capture usability requirements through guidelines”, in
Proc. of IEEE 7th Int. Conf. on Research Challenges in Information Sci-
ence RCIS’2013 (Paris, May 29-31, 2013), IEEE Press, pp. 1-12, 2013.

[16] G. Meixner and G. Calvary, “Introduction to Model-based User Inter-
face,” W3C Working Group Note. World Wide Web Consortium, Gene-
va, 7 January 2014, accessible at https://www.w3.org/TR/mbui-intro/

[17] J. Engel, C. Martin, C. Herdin, and P. Forbrig, “Formal pattern specifi-
cations to facilitate semi-automated user interface generation,” in Proc.
of 15th Int. Conf. on Human-Computer Interaction HCI Internation-
al’2013 (Las Vegas, July 21-26, 2013), Springer, pp. 300-309, 2013.

[18] P. Forbrig and A. Wolff, “Different kinds of pattern support for interac-
tive systems,” in Proc. of the 1st Int. workshop on Pattern-driven Engi-
neering of Interactive Computing Systems PEICS’2010 (Berlin, June 20,
2010), New York: ACM Press, pp. 36-39, 2010.

[19] J. Guerrero, J. Vanderdonckt, and J. Gonzalez, “FlowiXML: a Step to-
wards Designing Workflow Management Systems,” Journal of Web En-

gineering, vol. 4, no. 2, pp. 163-182, 2008.
[20] C. Alexander, “A pattern language: towns, buildings, construction,” Ox-

ford: Oxford University Press, 1977.
[21] F. Islam, “On usability pattern documentation: an XML-based ap-

proach,” Master thesis, Dept. of Computer Science, Concordia Universi-
ty, Montreal, October 2013, http://spectrum.library.concordia.ca/2394/

[22] P. Coad, D. North, and M. Mayfield, “Object models: strategies, pat-
terns, and applications,” 2nd ed., New York: Prentice Hall, 1996.

[23] J. Tidwell, Designing interfaces, patterns for effective interaction design,
2nd ed., New York: O’Reilly Media Inc., 2011.

[24] M. van Welie and G. van der Veer, “Pattern languages in interaction de-
sign: structure and organization,” in Proc. of IFIP TC13 Int. Conf. on
Human-Computer Interaction INTERACT’2003 (Zurich, September 1-5,
2003), Zurich: IOS Press, pp. 527-534, 2003.

[25] J.O. Borchers,”A pattern approach to interaction design,” in Proc. of 3rd
Int. Conf. on Designing Interactive Systems: processes, practices, meth-
ods, and techniques DIS’2000 (Brooklyn, August 17-19, 2000), New
York: ACM Press, pp. 369-378, 2000.

[26] Å. Granlund, D. Lafrenière, and A. Carr, “A pattern-supported approach
to the user interface design process,” in Proc. of 9th Int. Conf. on
Human-Computer Interaction HCI International’2001 (New Orleans),
Mahwah: Lawrence Erlbaum Associates, Pub., 2001.

[27] L. Pemberton and R. Griffiths, “The Brighton usability pattern collec-
tion,” 1999, http://www.it.bton.ac.uk/Research/patterns/home.html

[28] M. Perrins, “The 12 Patterns for User Interface Design”, 12 Dec. 2008.
[29] Portland Pattern Repository, 1995, accessible at http://c2.com/ppr/
[30] T. Coram and J. Lee, “Experiences-a pattern language for user interface

design,” 2011, http://www.maplefish.com/todd/papers/Experiences.html
[31] A. Wolff and P. Forbrig, “Pattern Catalogs using the Pattern Language

Meta Language,” Electronic Communication of the European Associa-
tion of Software Science and Technology, vol. 25, 2010.

[32] H. Javahery, “Usability pattern-oriented design: maximizing reusability
of pattern languages over the web,” Faculty of engineering and computer
science, Concordia University, Canada, 2002.

[33] J. Engel, Ch. Märtin, and P. Forbrig, “A Concerted Model-driven and
Pattern-based Framework for Developing User Interfaces of Interactive
Ubiquitous Applications,” in Proc. of 1st Int. Workshop on Large-scale
and Model-based Interactive Systems: Approaches and Challenges,
LMIS’2015 (Duisburg, June 23, 2015), vol. 1380, 2015, pp. 35-41.

[34] D. van Duyne, J. Landay, and J. Hong, “The design of sites, patterns for
creating winning websites,” NY: Prentice Hall International, 2006.

[35] P.J. Molina, M. Santiago, and O. Pastor, “User interface conceptual pat-
terns,” in Proc. of the 9th Int. Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS’2002 (Rostock, June 12-14,
2002), Lecture Notes in Comp. Science, vol. 2545, pp. 159-172, 2002.

[36] S. Henninger, “An Organizational Learning Method For Applying Usa-
bility Guidelines and Patterns,” in Proc. of 8th IFIP Int. Conf. on Engi-
neering for Human-Computer Interaction EHCI’2001 (Toronto, May 11-
13, 2001), LNCS, vol. 2254. Berlin: Springer, pp. 141-156, 2001.

[37] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design patterns: el-
ements of reusable object-oriented software,” Addison Wesley, 1995.

[38] J. Coplien and D.C. Schmidt, “Pattern language of program design,”
New York: Addison-Wesley, 1995.

[39] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt, “A factor mod-
el capturing requirements for generative user interface patterns,” in Proc.
of 5th Int. Conf. on Pervasive Patterns and Applications PAT-
TERNS’2013 (Valencia, May 27-June 1, 2013), Wilmington: Int. Acad.,
Research, and Industry Association, pp. 34-43, 2013.

[40] PLMLx: Extended Pattern Language Markup Language, May 2003, ac-
cessible at https://www.cs.kent.ac.uk/people/staff/saf/patterns/diet helm/
plmlx_doc/plml_doc.dtd.html

[41] J. Engel and C. Märtin, “PaMGIS: a framework for pattern-based model-
ing and generation of interactive systems,” in Proc. of 13th Int. Conf. on
Human-Computer Interaction HCI International’2009 (San Diego, 19-
24, 2009), LNCS, vol. 5610, Berlin: Springer, pp. 826-835, 2009.

[42] D.L Scapin and J.M.C Bastien, “Ergonomic criteria for evaluating the
ergonomic quality of interactive systems,” Behaviour & Information
Technology, vol. 16, no. 4/5, pp. 220-231, 1997.

[43] C. Kruschitz, “XPLML - a HCI pattern formalizing and unifying ap-
proach,” in Proc. of ACM Int. Conf. on Human Aspects in Computing
Systems CHI’2009 (Boston, April 4-9, 2009), Extended Abstracts, New
York: ACM Press, pp. 4117-4122, 2009.

IEEE RCIS 2016

282

http://www.informatik.uni-trier.de/~ley/pers/hd/o/Orme=ntilde=o:Yeshica_Isela.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Condori=Fern=aacute=ndez:Nelly.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pastor:Oscar.html
http://en.wikipedia.org/wiki/Oxford_University_Press

A
PP

EN
D

IX
 1

.A
TT

RI
B

U
TE

S
O

F
U

I P
A

TT
ER

N
 C

O
LL

EC
TI

O
N

S

A
ttr

ib
ut

es
 to

 d
ef

in
e

U
I p

at
te

rn
s i

n
ca

ta
lo

gu
es

A

ttr
ib

ut
es

 fr
om

 U
I p

at
te

rn
 fr

am
ew

or
k

El
em

en
ts

G

an
g

of

Fo
ur

 [3
7]

Ti

dw
el

l [
23

]

va
n

W
el

ie

[2
4]

va

n
D

uy
ne

[3

4]

C
op

lie
n

[3
8]

Po

rt
-

la
nd

[2

9]

PL
M

L
1.

1
[1

0]

PL
M

L
1.

2

X
PL

M
L

[4
3]

PL

M
Lx

[4

0]

U
PL

M
L

[2
1]

U

IM
L

4.
0

U
siP

X
M

L
[1

4]

PP
SL

[3

3]

M
in

ig
 e

t
al

. 2
01

5

UI
PL

M
L

Pa
tte

rn
ID

4

4

4

Pa

tte
rn

 ID

4

4

5

5

5

5

5

5

5

4

5

N
am

e
N

am
e

N
am

e
N

am
e

N
am

e
N

am
e

N
am

e
5

5

5

5

5

5

5

5

5

5

A
lia

s
K

no
w

 u
se

4

U

se
 W

he
n

Fi
gu

re

4

4

5

5

5

5

5

5

5

5

5

Pr
ob

le
m

In

te
nt

W

ha
t

5

Pr
ob

le
m

4

U

se
r

de
ci

si
on

5

5

5

5

5

5

5

5

5

C
on

te
xt

A

pp
lic

a-
bi

lit
y

U
se

 w
he

n
U

se
 W

he
n

B
ac

kg
ro

un
d

C
on

te
xt

U

se
r

de
ci

si
on

5

5

5

R

es
ul

-
tin

g
co

n-
te

xt

5

5

5

5

5

R
at

io
na

l
In

te
nt

W

hy

W
hy

4

R

es
ul

tin
g

co
nt

ex
t

U
se

r
de

ci
si

on

5

5

5

5

5

4

5

5

Im
pl

e-

m
en

ta
tio

n
Ty

pe

Im
pl

em
en

ta
-

tio
n

H
ow

H

ow

4

4

Ta
sk

5

5

5

D

e-
pl

oy
e-

m
en

t

4

5

Sa
m

pl
e

co
de

Sa

m
pl

e
co

de

4

4

4

4

4

5

5

5

Ill
us

tra
tio

n
M

ot
iv

at
io

n
Ex

am
pl

es

M
or

e
Ex

-
am

pl
es

Fi

gu
re

4

Ta

sk
 a

nd

Ta
sk

W

in
do

w

5

5

5

5

5

5

5

5

5

D
ia

gr
am

 (U
M

L)

St
ru

ct
ur

e
4

H

ow

5

5

5

5

5

5

5

4

5

Ev
id

en
ce

4

5

5

Pr

ob
le

m

5

5

5

5

5

5

4

5

C
on

fid
en

ce

4

5

5

5

5

5

5

5

5

4

So
lu

tio
n

4

4

So
lu

tio
n

So
lu

tio
n

So
lu

tio
n

Ta
sk

5

5

5

5

5

5

5

5

5

Fo
rc

es

C
on

se
qu

en
ce

4

4

4

Fo

rc
es

Ta

sk

5

4

5

W
ea

kn
ea

ss
es

4

4

4

4

4

4

4

4

4

4

4

5

4

4

5

Th
re

at
s

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

O
pp

or
tu

ni
tie

s
4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

C
at

eg
or

iz
at

io
n

4

5

5

5

5

5

4

4

4

4

4

co

lle
c-

tio
n

4

4

5

Pa
tte

rn
-

Li
nk

Ty

pe

R
el

at
ed

pa

tte
rn

In

 o
th

er
 li

br
ar

-
ie

s,
H

ow
, w

hy

U
se

 w
he

n,

H
ow

, w
hy

O

th
er

pa

tte
rn

s t
o

co
ns

id
er

,
pr

ob
le

m
,

ba
ck

gr
ou

nd

4

Ta
sk

 a
nd

Ta

sk

W
in

do
w

5

5

A
ss

oc
ia

-
tio

n
M

od
-

ul
e

R

el
at

ed

pa
tte

rn

R
el

a-
tio

n-
sh

ip

5

5

Pa
tte

rn
ID

4

4

4

5

4

5

5

m
et

ad
at

a

A
ss

oc
ia

-
tio

n
M

od
-

ul
e

Pa

tte
rn

lin

k
R

el
a-

tio
n

ID

4

5

C
ol

le
ct

io
n

ID

4

4

4

4

4

5

5

O
rg

an
i-

sa
tio

n
A

ss
oc

ia
-

tio
n

M
od

-
ul

e

4

R

el
at

ed

U
PI

D

4

5

La
be

l
4

4

4

4

4

5

5

A
ss

oc
ia

-
tio

n
M

od
-

ul
e

4

5

4

5

[T
yp

e
a

qu
ot

e
fro

m
 th

e
do

cu
m

en
t o

r t
he

 su
m

m
ar

y
of

 a
n

in
te

re
st

in
g

po
in

t.
Y

ou
 c

an
 p

os
iti

on
 th

e
te

xt
 b

ox
 a

ny
w

he
re

 in
 th

e
do

cu
m

en
t.

U
se

 th
e

D
ra

w
in

g
To

ol
s t

ab
 to

ch

an
ge

 th
e

fo
rm

at
tin

g
of

 th
e

pu
ll

qu
ot

e
te

xt
 b

ox
.]

Re
fe

-
re

nc
e

re
fe

re
nc

eI
D

4

4

Li

te
ra

tu
re

+C

om
m

en
ts

4

4

Ta

sk

4

4

A
ss

oc
ia

-
tio

n
M

od
-

ul
e

lit

er
a-

tu
re

4

4

5

re
fe

re
nc

eT
yp

e
4

4

4

4

4

4

4

5

4

5

au

th
or

s
5

5

5

5

4

4

4

5

5

5

re
fe

re
nc

eT
itl

e
5

5

5

5

5

5

4

5

5

5

Pu

bl
ish

in
g

da
te

5

5

5

5

4

4

4

4

5

5

U

R
L_

H
TM

L
4

4

4

4

4

4

4

4

5

5

U

R
L_

PD
F

4

4

4

4

4

4

4

4

5

5

U
R

L_
ab

st
ra

ct

4

4

4

4

4

4

4

4

5

5

R
ef

C
om

m
en

ts

4

4

4

4

4

4

4

5

4

5

IEEE RCIS 2016

283

R
ef

e-
re

nc
e

re
fe

re
nc

eI
D

4

4

Li

te
ra

tu
re

+C

om
m

en
ts

4

4

Ta

sk

4

4

A
ss

oc
ia

-
tio

n
M

od
-

ul
e

lit

er
a-

tu
re

4

4

5

re
fe

re
nc

eT
yp

e
4

4

4

4

4

4

4

5

4

5

au
th

or
s

5

5

5

5

4

4

4

5

5

5

re
fe

re
nc

eT
itl

e
5

5

5

5

5

5

4

5

5

5

Pu

bl
ish

in
g

da
te

5

5

5

5

4

4

4

4

5

5

U

R
L_

H
TM

L
4

4

4

4

4

4

4

4

5

5

U

R
L_

PD
F

4

4

4

4

4

4

4

4

5

5

U
R

L_
ab

st
ra

ct

4

4

4

4

4

4

4

4

5

5

R
ef

C
om

m
en

ts

4

4

4

4

4

4

4

5

4

5

Ex

am
pl

e
ex

am
pl

eI
D

4

5

5

5

ev

i-
de

nc
e

ev
i-

de
nc

e
5

5

5

4

4

5

ex
am

pl
eN

am
e

5

5

5

5

5

5

5

4

5

5

5

ex

am
pl

eT
yp

e
4

5

5

5

4

4

5

4

5

5

ex

am
pl

eD
es

cr
ip

tio
n

4

5

5

5

4

4

5

4

5

5

Ex
am

pl
eR

at
io

na
le

4

5

5

5

5

5

5

4

5

5

U
IM

od
el

A
ct

iv
ity

 D
om

ai
n

4

4

4

4

4

4

4

4

4

4

4

5

A
ut

ho
rs

4

4

4

4

4

4

4

4

M
an

-
ag

e-
m

en
t

5

5

V
er

sio
n

V
er

-
sio

nI
D

4

4

4

4

4

4

R

ev
i-

si
on

nu

m
-

be
r

R
ev

i-
si

on

nu
m

-
be

r

5

R
ev

i-
si

on

nu
m

be
r

5

5

5

C
re

at
io

n-
D

at
e

4

4

4

4

4

4

5

5

5

5

5

C
op

yr
ig

ht

4

4

4

4

4

4

4

4

5

lic

en
ce

4

4

4

4

4

4

4

4

5

M
od

i-
fD

at
e

4

4

4

4

4

4

La
st

m

od
i-

fie
d

La
st

m

od
i-

fie
d

5

Tr
an

sf
or

m
 m

od
el

4

4

4

4

4

4

4

4

4

4

4

5

4

5

Ta

sk
 m

od
el

4

4

4

4

4

4

4

4

4

4

5

5

4

5

D

om
ai

n
m

od
el

4

4

4

4

4

4

4

4

4

4

5

5

4

5

A

bs
tra

ct
U

I-
m

od
el

A

U
I

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

C

om
-

po
si

-
tio

n

4

4

4

4

4

4

4

4

4

4

5

5

5

5

Pr
es

en
-

ta
tio

n-
Su

p-
po

rt

4

4

4

4

4

4

4

4

4

4

5

5

5

5

C
on

cr
et

eU
Im

od
el

4

4

4

4

4

4

4

4

4

4

4

5

5

4

5

FU
I m

od
el

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

M
ap

pi
ng

 m
od

el

4

4

4

4

4

4

4

4

4

4

4

5

4

5

C
on

te
xt

M
od

el

4

4

4

4

4

4

4

4

4

4

4

5

4

5

G
an

g
of

Fo

ur
 [3

7]

Ti
dw

el
l [

23
]

va

n
W

el
ie

[2

4]

va
n

D
uy

ne

[3
4]

C

op
lie

n
[3

8]

Po
rtl

an
d

[2
9]

PL

M
L

1.
1

[1
0]

PL
M

L
1.

2

X
PL

M
L

[4
3]

PL

M
Lx

[4

0]

U
PL

M
L

[2
1]

U

IM
L

4.
0

U
si

PX
M

L
[1

4]

PP
SL

[3

3]

M
in

irg
 e

t
al

. 2
01

5
U

IP
LM

L

IEEE RCIS 2016

284

	0. debut
	0. e
	0. keynote 1
	0. Keynote 2
	0. keynote 3
	1. 0
	1.1. paper_17
	1.1a page blanche
	1.2. paper_30
	1.3. paper_62
	1.4. paper_144
	2. 0
	2.1. paper_40
	2.2. paper_75
	2.3. paper_148
	3. 0
	3.1. paper_16
	3.2. paper_66
	3.3. paper_68
	3.4. paper_120
	4. 0
	4.1. paper_39
	4.2. paper_107
	4.2a page blanche
	4.3. paper_82
	4.4. paper_115
	5. 0
	5.1. paper_69
	5.2. paper_119
	5.3. paper_137
	5.4. paper_140
	6. 0
	6.1. paper_33
	6.2. paper_54
	6.3. paper_118
	6.4. paper_143
	7. 0
	7.1. paper_26
	7.2. paper_128
	7.3. paper_65
	8. 0
	8.1. paper_25
	8.1a. page blanche
	8.2. paper_162
	8.3. paper_126
	9. 0
	9.1. paper_74
	9.2. paper_95
	9.3. paper_96
	10. 0
	10.1. paper_91
	10.2. paper_124
	10.3. paper_158
	11. 0
	11.1. paper_64
	11.2. paper_78
	11.3. paper_57
	12. 0
	12.1. paper_70
	12.2. paper_59
	12.3. paper_104
	12.4. paper_110
	13. 0
	13.1. paper_102
	13.2. paper_116
	13.3. paper_129
	14. 0
	14.1. paper_49
	14.2. paper_105
	14.3. paper_108
	15. 0
	15.1. paper_60
	15.2. paper_147
	15.3. paper_35
	15.4. paper_79
	16. 0
	16.1. paper_34
	16.1a page blanche
	16.2. paper_56
	16.3. paper_136
	17. 0
	17.1. paper_156
	17.2. paper_51
	17.2a page blanche
	17.3. paper_76
	17.4. paper_157
	18. 0
	18.1. paper_46
	18.2. paper_47
	18.3. paper_52
	DC.1. 0
	DC.1.1. paper_179
	DC.1.2. paper_181
	DC.1.3. paper_182
	DC.2. 0
	DC.2.1. paper_178
	DC.2.2. paper_180
	Poster 0
	Poster 1. paper_19
	Poster 2. paper_44
	Poster 3. paper_63
	Poster 4. paper_72
	Poster 5. paper_90
	Poster 6. paper_127
	Poster 7. paper_164
	Poster 8. paper_172
	x. authors index

