User menu

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships

Bibliographic reference Jain, Anubhav ; Hautier, Geoffroy ; Ong, Shyue Ping ; Persson, Kristin. New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. In: Journal of Materials Research, Vol. 31, no.08, p. 977-994 (2016)
Permanent URL
  1. Hautier Geoffroy, Jain Anubhav, Ong Shyue Ping, From the computer to the laboratory: materials discovery and design using first-principles calculations, 10.1007/s10853-012-6424-0
  2. Mater. Today, 8, 38 (2005)
  3. Rupp Matthias, Proschak Ewgenij, Schneider Gisbert, Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity, 10.1021/ci700274r
  4. Rupp Matthias, Tkatchenko Alexandre, Müller Klaus-Robert, von Lilienfeld O. Anatole, Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning, 10.1103/physrevlett.108.058301
  5. Hansen Katja, Montavon Grégoire, Biegler Franziska, Fazli Siamac, Rupp Matthias, Scheffler Matthias, von Lilienfeld O. Anatole, Tkatchenko Alexandre, Müller Klaus-Robert, Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies, 10.1021/ct400195d
  6. Bergerhoff G., Hundt R., Sievers R., Brown I. D., The inorganic crystal structure data base, 10.1021/ci00038a003
  7. Allen Frank H., The Cambridge Structural Database: a quarter of a million crystal structures and rising, 10.1107/s0108768102003890
  8. Villars P, Onodera N, Iwata S, The Linus Pauling file (LPF) and its application to materials design, 10.1016/s0925-8388(98)00605-7
  9. Shannon R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, 10.1107/s0567739476001551
  10. Acta Crystallogr., Sect. B: Struct. Sci., 244, 244 (1985)
  11. Brese N. E., O'Keeffe M., Bond-valence parameters for solids, 10.1107/s0108768190011041
  12. Brown I. D., Wu K. K., Empirical parameters for calculating cation–oxygen bond valences, 10.1107/s0567740876006869
  13. Acta Crystallogr., Sect. A: Found. Adv., 32, 24 (1976)
  14. Yu Daqiu, Xue Dongfeng, Bond analyses of borates from the Inorganic Crystal Structure Database, 10.1107/s0108768106018520
  15. Mackay A. L., The statistics of the distribution of crystalline substances among the space groups, 10.1107/s0365110x67000623
  16. Urusov V. S., Nadezhina T. N., Frequency distribution and selection of space groups in inorganic crystal chemistry, 10.1007/s10947-009-0186-9
  17. Abrahams S. C., Inorganic structures in space groupP3m1; coordinate analysis and systematic prediction of new ferroelectrics, 10.1107/s0108768108018144
  18. Solid State Ionics, 2 (2012)
  19. The Major Ternary Structural Families (1974)
  20. Pettifor D G, The structures of binary compounds. I. Phenomenological structure maps, 10.1088/0022-3719/19/3/002
  21. Pettifor David G., Structure maps in alloy design, 10.1039/ft9908601209
  22. J. Phys.: Condens. Matter, 15, 13 (2003)
  23. J. Phys.: Condens. Matter, 15, 4361 (2003)
  24. Kong Chang Sun, Luo Wei, Arapan Sergiu, Villars Pierre, Iwata Shuichi, Ahuja Rajeev, Rajan Krishna, Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry, 10.1021/ci200628z
  25. White Peter S., Rodgers John R., Le Page Yvon, CRYSTMET: a database of the structures and powder patterns of metals and intermetallics, 10.1107/s0108768102002902
  26. J. Chem. Educ. (2015)
  27. Bale C.W., Bélisle E., Chartrand P., Decterov S.A., Eriksson G., Hack K., Jung I.-H., Kang Y.-B., Melançon J., Pelton A.D., Robelin C., Petersen S., FactSage thermochemical software and databases — recent developments, 10.1016/j.calphad.2008.09.009
  28. Materials Thermochemistry, 376 (1993)
  29. Handbook of Ternary Alloy Phase Diagrams, 10378 (1995)
  30. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  31. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  32. Shi Yong, Tian Yingjie, Preface : Some Advanced Techniques in Data Science, 10.1007/s40745-015-0036-x
  33. Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
  34. Curtarolo Stefano, Setyawan Wahyu, Wang Shidong, Xue Junkai, Yang Kesong, Taylor Richard H., Nelson Lance J., Hart Gus L.W., Sanvito Stefano, Buongiorno-Nardelli Marco, Mingo Natalio, Levy Ohad, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, 10.1016/j.commatsci.2012.02.002
  35. Saal James E., Kirklin Scott, Aykol Muratahan, Meredig Bryce, Wolverton C., Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), 10.1007/s11837-013-0755-4
  36. Hachmann Johannes, Olivares-Amaya Roberto, Atahan-Evrenk Sule, Amador-Bedolla Carlos, Sánchez-Carrera Roel S., Gold-Parker Aryeh, Vogt Leslie, Brockway Anna M., Aspuru-Guzik Alán, The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid, 10.1021/jz200866s
  37. Ortiz C., Eriksson O., Klintenberg M., Data mining and accelerated electronic structure theory as a tool in the search for new functional materials, 10.1016/j.commatsci.2008.07.016
  38. Phys. Rev. B: Condens. Matter Mater. Phys., 85, 1 (2012)
  39. Landis David D., Hummelshoj Jens S., Nestorov Svetlozar, Greeley Jeff, Dulak Marcin, Bligaard Thomas, Norskov Jens K., Jacobsen Karsten W., The Computational Materials Repository, 10.1109/mcse.2012.16
  40. Hummelshøj Jens S., Abild-Pedersen Frank, Studt Felix, Bligaard Thomas, Nørskov Jens K., CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis, 10.1002/anie.201107947
  41. Togo Atsushi, Tanaka Isao, First principles phonon calculations in materials science, 10.1016/j.scriptamat.2015.07.021
  42. Gorai Prashun, Gao Duanfeng, Ortiz Brenden, Miller Sam, Barnett Scott A., Mason Thomas, Lv Qin, Stevanović Vladan, Toberer Eric S., TE Design Lab: A virtual laboratory for thermoelectric material design, 10.1016/j.commatsci.2015.11.006
  43. Yuan Gary, Gygi François, ESTEST: a framework for the validation and verification of electronic structure codes, 10.1088/1749-4699/3/1/015004
  44. Pence Harry E., Williams Antony, ChemSpider: An Online Chemical Information Resource, 10.1021/ed100697w
  45. Mater. Perform. Charact., 4 (2015)
  46. Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia Shreyas, Gunter Dan, Chevrier Vincent L., Persson Kristin A., Ceder Gerbrand, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, 10.1016/j.commatsci.2012.10.028
  47. Comput. Sci. Eng., 4, 56 (2002)
  48. Curtarolo Stefano, Setyawan Wahyu, Hart Gus L.W., Jahnatek Michal, Chepulskii Roman V., Taylor Richard H., Wang Shidong, Xue Junkai, Yang Kesong, Levy Ohad, Mehl Michael J., Stokes Harold T., Demchenko Denis O., Morgan Dane, AFLOW: An automatic framework for high-throughput materials discovery, 10.1016/j.commatsci.2012.02.005
  49. Pizzi Giovanni, Cepellotti Andrea, Sabatini Riccardo, Marzari Nicola, Kozinsky Boris, AiiDA: automated interactive infrastructure and database for computational science, 10.1016/j.commatsci.2015.09.013
  50. Jain Anubhav, Ong Shyue Ping, Chen Wei, Medasani Bharat, Qu Xiaohui, Kocher Michael, Brafman Miriam, Petretto Guido, Rignanese Gian-Marco, Hautier Geoffroy, Gunter Daniel, Persson Kristin A., FireWorks: a dynamic workflow system designed for high-throughput applications : FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications, 10.1002/cpe.3505
  51. Ong Shyue Ping, Cholia Shreyas, Jain Anubhav, Brafman Miriam, Gunter Dan, Ceder Gerbrand, Persson Kristin A., The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles, 10.1016/j.commatsci.2014.10.037
  52. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 80 (2009)
  53. Ghiringhelli Luca M., Vybiral Jan, Levchenko Sergey V., Draxl Claudia, Scheffler Matthias, Big Data of Materials Science: Critical Role of the Descriptor, 10.1103/physrevlett.114.105503
  54. Yang Kesong, Setyawan Wahyu, Wang Shidong, Buongiorno Nardelli Marco, Curtarolo Stefano, A search model for topological insulators with high-throughput robustness descriptors, 10.1038/nmat3332
  55. Burzlaff Hans, Zimmermann Helmuth, On symmetry classes of crystal structures, 10.1107/s0108767309030116
  56. Allmann Rudolf, Hinek Roland, The introduction of structure types into the Inorganic Crystal Structure Database ICSD, 10.1107/s0108767307038081
  57. Hautier Geoffroy, Fischer Christopher C., Jain Anubhav, Mueller Tim, Ceder Gerbrand, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory, 10.1021/cm100795d
  58. Inorg. Chem., 50, 656 (2010)
  59. Behler Jörg, Parrinello Michele, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, 10.1103/physrevlett.98.146401
  60. Yang Lusann, Dacek Stephen, Ceder Gerbrand, Proposed definition of crystal substructure and substructural similarity, 10.1103/physrevb.90.054102
  61. Oganov Artem R., Valle Mario, How to quantify energy landscapes of solids, 10.1063/1.3079326
  62. Chem. Mater., 27, 735 (2014)
  63. Zhang Honghong, Zhao Xue, Chen Dezhan, A computational investigation of the hydrogenation of imines catalyzed by rhodium thiolate complexes, 10.1002/qua.24751
  64. Kong Chang Sun, Broderick Scott R., Jones Travis E., Loyola Claudia, Eberhart Mark E., Rajan Krishna, Mining for elastic constants of intermetallics from the charge density landscape, 10.1016/j.physb.2014.11.002
  65. Seko Atsuto, Maekawa Tomoya, Tsuda Koji, Tanaka Isao, Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids, 10.1103/physrevb.89.054303
  66. Schmidt Michael, Lipson Hod, Distilling Free-Form Natural Laws from Experimental Data, 10.1126/science.1165893
  67. Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
  68. Chem. Mater., 23, 3945 (2011)
  69. Jain Anubhav, Hautier Geoffroy, Ong Shyue Ping, Dacek Stephen, Ceder Gerbrand, Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study, 10.1039/c5cp00250h
  70. Ong Shyue Ping, Jain Anubhav, Hautier Geoffroy, Kang Byoungwoo, Ceder Gerbrand, Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations, 10.1016/j.elecom.2010.01.010
  71. Godshall N. A., Relationships among Electrochemical, Thermodynamic, and Oxygen Potential Quantities in Lithium-Transition Metal-Oxygen Molten Salt Cells, 10.1149/1.2115624
  72. Xu R., WunschII D., Survey of Clustering Algorithms, 10.1109/tnn.2005.845141
  73. Data clustering: theory, algorithms, and applications, 20 (2007)
  74. Meredig Bryce, Wolverton C., Dissolving the Periodic Table in Cubic Zirconia: Data Mining to Discover Chemical Trends, 10.1021/cm403727z
  75. Castelli I E, Jacobsen K W, Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure, 10.1088/0965-0393/22/5/055007
  76. Broderick Scott R., Aourag Hafid, Rajan Krishna, Classification of Oxide Compounds through Data-Mining Density of States Spectra : Classification of Oxide Compounds, 10.1111/j.1551-2916.2011.04476.x
  77. Modern Methods for Robust Regression (2008)
  78. Chelikowsky James R., Anderson Karen E., Melting point trends in intermetallic alloys, 10.1016/0022-3697(87)90084-9
  79. J. R. Stat. Soc. B, 58, 267 (1996)
  80. Zou Hui, Hastie Trevor, Regularization and variable selection via the elastic net, 10.1111/j.1467-9868.2005.00503.x
  81. Dey Partha, Bible Joe, Datta Somnath, Broderick Scott, Jasinski Jacek, Sunkara Mahendra, Menon Madhu, Rajan Krishna, Informatics-aided bandgap engineering for solar materials, 10.1016/j.commatsci.2013.10.016
  82. Srinivasan Srikant, Rajan Krishna, “Property Phase Diagrams” for Compound Semiconductors through Data Mining, 10.3390/ma6010279
  83. Kong Chang Sun, Rajan Krishna, Rational design of binary halide scintillators via data mining, 10.1016/j.nima.2012.03.050
  84. Toda-Caraballo Isaac, Galindo-Nava Enrique I., Rivera-Díaz-del-Castillo Pedro E.J., Unravelling the materials genome: Symmetry relationships in alloy properties, 10.1016/j.jallcom.2013.02.148
  85. ACS Comb. Sci. (2015)
  86. Curtarolo Stefano, Morgan Dane, Persson Kristin, Rodgers John, Ceder Gerbrand, Predicting Crystal Structures with Data Mining of Quantum Calculations, 10.1103/physrevlett.91.135503
  87. Balachandran P. V., Broderick S. R., Rajan K., Identifying the 'inorganic gene' for high-temperature piezoelectric perovskites through statistical learning, 10.1098/rspa.2010.0543
  88. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (2000)
  89. Pilania Ghanshyam, Wang Chenchen, Jiang Xun, Rajasekaran Sanguthevar, Ramprasad Ramamurthy, Accelerating materials property predictions using machine learning, 10.1038/srep02810
  90. Phys. Rev. B: Condens. Matter Mater. Phys., 89, 1 (2014)
  91. Jalem Randy, Nakayama Masanobu, Kasuga Toshihiro, An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks, 10.1039/c3ta13235h
  92. Pettersson Frank, Suh Changwon, Saxen Henrik, Rajan Krishna, Chakraborti Nirupam, Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithms, 10.1080/10426910802539762
  93. Scott D. J., Manos S., Coveney P. V., Design of Electroceramic Materials Using Artificial Neural Networks and Multiobjective Evolutionary Algorithms, 10.1021/ci700269r
  94. Zhang Y.M., Yang S., Evans J.R.G., Revisiting Hume-Rothery’s Rules with artificial neural networks, 10.1016/j.actamat.2007.10.059
  95. Carrete Jesús, Mingo Natalio, Wang Shidong, Curtarolo Stefano, Nanograined Half-Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High-Throughput Statistical Study, 10.1002/adfm.201401201
  96. R News, 2, 18 (2002)
  97. Meredig B., Agrawal A., Kirklin S., Saal J. E., Doak J. W., Thompson A., Zhang K., Choudhary A., Wolverton C., Combinatorial screening for new materials in unconstrained composition space with machine learning, 10.1103/physrevb.89.094104
  98. Fischer Christopher C., Tibbetts Kevin J., Morgan Dane, Ceder Gerbrand, Predicting crystal structure by merging data mining with quantum mechanics, 10.1038/nmat1691
  99. Fix Thomas, Sahonta S.-Lata, Garcia Vincent, MacManus-Driscoll Judith L., Blamire Mark G., Structural and Dielectric Properties of SnTiO3, a Putative Ferroelectric, 10.1021/cg200333q
  100. Jain Anubhav, Hautier Geoffroy, Moore Charles, Kang Byoungwoo, Lee Jinhyuk, Chen Hailong, Twu Nancy, Ceder Gerbrand, A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries, 10.1149/2.080205jes
  101. Kuang Quan, Xu Jiantie, Zhao Yanming, Chen Xiaolong, Chen Liquan, Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries, 10.1016/j.electacta.2010.11.051
  102. Chen Hailong, Hautier Geoffroy, Ceder Gerbrand, Synthesis, Computed Stability, and Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates, 10.1021/ja3040834
  103. Hautier Geoffroy, Jain Anubhav, Chen Hailong, Moore Charles, Ong Shyue Ping, Ceder Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, 10.1039/c1jm12216a
  104. Jähne Carsten, Neef Christoph, Koo Changhyun, Meyer Hans-Peter, Klingeler Rüdiger, A new LiCoPO4 polymorph via low temperature synthesis, 10.1039/c2ta00118g
  105. Snyder Katharina, Raguž Branimir, Hoffbauer Wilfried, Glaum Robert, Ehrenberg Hartmut, Herklotz Markus, Lithium Copper(I) Orthophosphates Li3-xCuxPO4: Synthesis, Crystal Structures, and Electrochemical Properties : Lithium Copper(I) Orthophosphates Li3-xCuxPO4, 10.1002/zaac.201300606
  106. Mosymow E., Glaum R., Kremer R.K., Searching for “LiCrIIPO4”, 10.1016/j.jssc.2014.06.020
  107. Yang Lusann, Ceder Gerbrand, Data-mined similarity function between material compositions, 10.1103/physrevb.88.224107
  108. Seko Atsuto, Togo Atsushi, Hayashi Hiroyuki, Tsuda Koji, Chaput Laurent, Tanaka Isao, Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization, 10.1103/physrevlett.115.205901
  109. J. Stat. Software, 48, 1 (2012)
  110. Biometrika, 39, 324 (1952)
  111. Robertson J., Clark S. J., Limits to doping in oxides, 10.1103/physrevb.83.075205
  112. Scanlon David O., Watson Graeme W., On the possibility of p-type SnO2, 10.1039/c2jm34352e
  113. Zunger Alex, Practical doping principles, 10.1063/1.1584074
  114. Kawazoe Hiroshi, Yasukawa Masahiro, Hyodo Hiroyuki, Kurita Masaaki, Yanagi Hiroshi, Hosono Hideo, 10.1038/40087
  115. Sheng Su, Fang Guojia, Li Chun, Xu Sheng, Zhao Xingzhong, p-type transparent conducting oxides, 10.1002/pssa.200521479
  116. Kudo Atsushi, Yanagi Hiroshi, Hosono Hideo, Kawazoe Hiroshi, SrCu2O2: A p-type conductive oxide with wide band gap, 10.1063/1.121761
  117. Trimarchi Giancarlo, Peng Haowei, Im Jino, Freeman Arthur J., Cloet Veerle, Raw Adam, Poeppelmeier Kenneth R., Biswas Koushik, Lany Stephan, Zunger Alex, Using design principles to systematically plan the synthesis of hole-conducting transparent oxides: Cu3VO4and Ag3VO4as a case study, 10.1103/physrevb.84.165116
  118. J. Phys.: Condens. Matter, 23, 334210 (2011)
  119. Nat. Commun., 4, 2292 (2013)
  120. Peng Haowei, Lany Stephan, Semiconducting transition-metal oxides based ond5cations: Theory for MnO and Fe2O3, 10.1103/physrevb.85.201202
  121. Arlot Sylvain, Celisse Alain, A survey of cross-validation procedures for model selection, 10.1214/09-ss054