User menu

Orientation kinematics of short fibres in a second-order viscoelastic fluid

Bibliographic reference Borzacchiello, Domenico ; Abisset-Chavanne, Emmanuelle ; Chinesta, Francisco ; Keunings, Roland. Orientation kinematics of short fibres in a second-order viscoelastic fluid. In: Rheologica Acta : an international journal of rheology, Vol. 55, p. 397-409 (2016)
Permanent URL http://hdl.handle.net/2078.1/173692
  1. Abisset-Chavanne Emmanuelle, Mezher Rabih, Le Corre Steven, Ammar Amine, Chinesta Francisco, Kinetic Theory Microstructure Modeling in Concentrated Suspensions, 10.3390/e15072805
  2. Abisset-Chavanne E., Chinesta F., Férec J., Ausias G., Keunings R., On the multiscale description of dilute suspensions of non-Brownian rigid clusters composed of rods, 10.1016/j.jnnfm.2014.08.014
  3. Advani Suresh G., Tucker Charles L., The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites, 10.1122/1.549945
  4. Advani Suresh G., Tucker Charles L., Closure approximations for three‐dimensional structure tensors, 10.1122/1.550133
  5. Advani S (ed) (1994) Flow and rheology in polymer composites manufacturing. Elsevier
  6. Ammar A, Chinesta F (2005) A particle strategy for solving the Fokker-Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions. In: Lectures Notes on Computational Science and Engineering, vol 43, pp 1–16
  7. Ammar A., Mokdad B., Chinesta F., Keunings R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, 10.1016/j.jnnfm.2006.07.007
  8. Ammar A., Mokdad B., Chinesta F., Keunings R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids, 10.1016/j.jnnfm.2007.03.009
  9. Azaiez J., Chiba K., Chinesta F., Poitou A., State-of-the-Art on numerical simulation of fiber-reinforced thermoplastic forming processes, 10.1007/bf02736650
  10. Binetruy C, Chinesta F, Keunings R (2015) Flows in polymers, reinforced polymers and composites. A multiscale approach. Springer, Springerbriefs
  11. Batchelor G. K., The stress system in a suspension of force-free particles, 10.1017/s0022112070000745
  12. Batchelor G. K., Slender-body theory for particles of arbitrary cross-section in Stokes flow, 10.1017/s002211207000191x
  13. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, Volume 2: Kinetic Theory. Wiley
  14. Brunn P., The slow motion of a rigid particle in a second-order fluid, 10.1017/s0022112077000822
  15. Chaubal C.V, Srinivasan A, Eğecioğlu Ö, Leal L.G, Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems Part 1: Method, 10.1016/s0377-0257(97)01542-5
  16. Chauvière Cédric, Lozinski Alexei, Simulation of dilute polymer solutions using a Fokker–Planck equation, 10.1016/j.compfluid.2003.02.002
  17. Chiba Kunji, Ammar Amine, Chinesta Francisco, On the fiber orientation in steady recirculating flows involving short fibers suspensions, 10.1007/s00397-004-0422-3
  18. Chinesta F., Chaidron G., Poitou A., On the solution of Fokker–Planck equations in steady recirculating flows involving short fiber suspensions, 10.1016/s0377-0257(03)00100-9
  19. Chinesta F., Ammar A., Leygue A., Keunings R., An overview of the proper generalized decomposition with applications in computational rheology, 10.1016/j.jnnfm.2010.12.012
  20. Chinesta Francisco, From Single-Scale to Two-Scales Kinetic Theory Descriptions of Rods Suspensions, 10.1007/s11831-013-9079-3
  21. Chinesta Francisco, Keunings Roland, Leygue Adrien, The Proper Generalized Decomposition for Advanced Numerical Simulations, ISBN:9783319028644, 10.1007/978-3-319-02865-1
  22. Choi Young Joon, Hulsen Martien A., Meijer Han E.H., An extended finite element method for the simulation of particulate viscoelastic flows, 10.1016/j.jnnfm.2010.02.021
  23. Cruz C., Illoul L., Chinesta F., Régnier G., Effects of a bent structure on the linear viscoelastic response of diluted carbon nanotube suspensions, 10.1007/s00397-010-0487-0
  24. Cruz C., Chinesta F., Régnier G., Review on the Brownian Dynamics Simulation of Bead-Rod-Spring Models Encountered in Computational Rheology, 10.1007/s11831-012-9072-2
  25. Cueto Elias, Monge Rosa, Chinesta Francisco, Poitou Arnaud, Alfaro Iciar, Mackley Malcolm R., Rheological modeling and forming process simulation of CNT nanocomposites, 10.1007/s12289-009-0659-6
  26. D’Avino G, Hulsen MA, Greco F, Maffettone PL (2014) Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Phys Rev E 043006:89
  27. D’Avino G., Maffettone P.L., Particle dynamics in viscoelastic liquids, 10.1016/j.jnnfm.2014.09.014
  28. Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon Press, Oxford
  29. Dupret f., Verleye V., Modelling the flow of fiber suspensions in narrow gaps, Rheology Series (1999) ISBN:9780444826794 p.1347-1398, 10.1016/s0169-3107(99)80020-3
  30. Folgar Fransisco, Tucker Charles L., Orientation Behavior of Fibers in Concentrated Suspensions, 10.1177/073168448400300201
  31. Giesekus Hanswalter, Die simultane Translations- und Rotationsbewegung einer Kugel in einer elastoviskosen Flüssigkeit, 10.1007/bf01974457
  32. Gunes D.Z., Scirocco R., Mewis J., Vermant J., Flow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheology, 10.1016/j.jnnfm.2008.05.003
  33. Hand George L., A theory of anisotropic fluids, 10.1017/s0022112062000476
  34. Harlen Oliver G., The negative wake behind a sphere sedimenting through a viscoelastic fluid, 10.1016/s0377-0257(02)00139-8
  35. Hinch E. J., Leal L. G., The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, 10.1017/s002211207200271x
  36. Hinch E. J., Leal L. G., Constitutive equations in suspension mechanics. Part 1. General formulation, 10.1017/s0022112075002698
  37. Hinch E. J., Leal L. G., Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, 10.1017/s0022112076003200
  38. Iso Yoichi, Cohen Claude, Koch Donald L, Orientation in simple shear flow of semi-dilute fiber suspensions 2. Highly elastic fluids, 10.1016/0377-0257(95)01405-5
  39. Jeffery G. B., The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, 10.1098/rspa.1922.0078
  40. Keunings R., On the Peterlin approximation for finitely extensible dumbbells, 10.1016/s0377-0257(96)01497-8
  41. Kröger Martin, Ammar Amine, Chinesta Francisco, Consistent closure schemes for statistical models of anisotropic fluids, 10.1016/j.jnnfm.2007.05.007
  42. Leal L. G., The slow motion of slender rod-like particles in a second-order fluid, 10.1017/s0022112075001450
  43. Lozinski Alexei, Chauvière Cédric, A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model, 10.1016/s0021-9991(03)00248-1
  44. Ma A. W. K., Chinesta F., Mackley M. R., The rheology and modeling of chemically treated carbon nanotubes suspensions, 10.1122/1.3093105
  45. Öttinger HC, Laso M (1992) Smart polymers in finite-element calculations, in Theoretical and applied rheology. In: Moldenaers P, Keunings R (eds) Proceedings XIth international congress on rheology, vol 1. Elsevier, Amsterdam, pp 286–288
  46. Petrie Christopher J.S., The rheology of fibre suspensions, 10.1016/s0377-0257(99)00069-5
  47. Pruliere E, Ammar A, El Kissi N, Chinesta F (2009) Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Archives of computational methods in engineering. State Art Rev 16:1–30
  48. Singh P., Joseph D.D., Hesla T.I., Glowinski R., Pan T.-W., A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows, 10.1016/s0377-0257(99)00104-4
  49. Tanner Roger I., Housiadas Kostas D., Qi Fuzhong, Mechanism of drag increase on spheres in viscoelastic cross-shear flows, 10.1016/j.jnnfm.2013.10.007
  50. Tucker Charles L., Flow regimes for fiber suspensions in narrow gaps, 10.1016/0377-0257(91)80017-e
  51. Villone M.M., D’Avino G., Hulsen M.A., Greco F., Maffettone P.L., Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows, 10.1016/j.jnnfm.2012.12.006
  52. Wapperom P, Keunings R, Legat V, The backward-tracking Lagrangian particle method for transient viscoelastic flows, 10.1016/s0377-0257(99)00095-6
  53. Wapperom P., Keunings R., Numerical simulation of branched polymer melts in transient complex flow using pom–pom models, 10.1016/s0377-0257(00)00223-8
  54. Yu Zhaosheng, Phan-Thien Nhan, Fan Yurun, Tanner Roger I., Viscoelastic mobility problem of a system of particles, 10.1016/s0377-0257(02)00014-9
  55. Yu Zhaosheng, Wachs Anthony, Peysson Yannick, Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method, 10.1016/j.jnnfm.2006.03.015