User menu

Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods

Bibliographic reference Taylor, Adrien ; Hendrickx, Julien ; Glineur, François. Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods. In: Mathematical Programming, Vol. 161, no. 1, p. 307–345 (2017)
Permanent URL
  1. Bauschke Heinz H., Combettes Patrick L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, ISBN:9781441994660, 10.1007/978-1-4419-9467-7
  2. Beck Amir, Quadratic Matrix Programming, 10.1137/05064816x
  3. Beck A., Teboulle M., Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems, 10.1109/tip.2009.2028250
  4. Beck Amir, Teboulle Marc, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, 10.1137/080716542
  5. Ben-Tal Aharon, Nemirovski Arkadi, Lectures on Modern Convex Optimization : Analysis, Algorithms, and Engineering Applications, ISBN:9780898714913, 10.1137/1.9780898718829
  6. Bertsekas, D.P.: Convex optimization theory. Athena Scientific, Belmont (2009)
  7. Bertsekas, D.P.: Convex optimization algorithms. Athena Scientific, Belmont (2015)
  8. Boyd Stephen, Vandenberghe Lieven, Convex Optimization, ISBN:9780511804441, 10.1017/cbo9780511804441
  9. Devolder Olivier, Glineur François, Nesterov Yurii, Double Smoothing Technique for Large-Scale Linearly Constrained Convex Optimization, 10.1137/110826102
  10. Drori Yoel, Teboulle Marc, Performance of first-order methods for smooth convex minimization: a novel approach, 10.1007/s10107-013-0653-0
  11. Härter, V., Jansson, C., Lange, M.: VSDP: A matlab toolbox for verified semidefinite-quadratic-linear programming. Technical report, Institute for Reliable Computing, Hamburg University of Technology (2012)
  12. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. Springer, Heidelberg (1996). (Two volumes—2nd printing)
  13. Kim, D., Fessler, J.: On the convergence analysis of the optimized gradient methods. arXiv preprint arXiv:1510.08573 (2015)
  14. Kim Donghwan, Fessler Jeffrey A., Optimized first-order methods for smooth convex minimization, 10.1007/s10107-015-0949-3
  15. Lambert, D., Crouzeix, J.P., Nguyen, V., Strodiot, J.J.: Finite convex integration. J. Convex Anal. 11(1), 131–146 (2004)
  16. Lessard Laurent, Recht Benjamin, Packard Andrew, Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints, 10.1137/15m1009597
  17. Lofberg J., YALMIP : a toolbox for modeling and optimization in MATLAB, 10.1109/cacsd.2004.1393890
  18. Mosek, A.: The MOSEK optimization software, vol. 54. (2010)
  19. Nemirovsky, A., Yudin, D.: Problem complexity and method efficiency in optimization. Wiley-Interscience, New York (1983)
  20. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O( $$1/k^2$$ 1 / k 2 )). Sov. Math. Dokl. 27, 372–376 (1983)
  21. Nesterov Yurii, Introductory Lectures on Convex Optimization, ISBN:9781461346913, 10.1007/978-1-4419-8853-9
  22. Nesterov, Y.: How to make the gradients small. Optima 88, 10–11 (2012)
  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1996)
  24. Rockafellar R. Tyrrell, Wets Roger J. B., Variational Analysis, ISBN:9783540627722, 10.1007/978-3-642-02431-3
  25. Sturm Jos F., Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones, 10.1080/10556789908805766
  26. Vandenberghe Lieven, Boyd Stephen, Semidefinite Programming, 10.1137/1038003