User menu

A Riemannian BFGS method for nonconvex optimization problems

Bibliographic reference Huang, Wen ; Absil, Pierre-Antoine ; Gallivan, Kyle A.. A Riemannian BFGS method for nonconvex optimization problems.ENUMATH 2015 (Ankara, Turkey, September 14-18, 2015). In: Lecture Notes in Computational Science and Engineering, Vol. 112, p. 627-634 (2016)In: ENUMATH 2015 Proceedings, Springer : (Germany) Heidelberg2016
Permanent URL
  1. P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008)
  2. W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. (Academic, Orlando, 1986)
  3. Byrd Richard H., Nocedal Jorge, A Tool for the Analysis of Quasi-Newton Methods with Application to Unconstrained Minimization, 10.1137/0726042
  4. Dai Yu-Hong, A perfect example for the BFGS method, 10.1007/s10107-012-0522-2
  5. J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Springer, New Jersey, 1983)
  6. Gabay D., Minimizing a differentiable function over a differential manifold, 10.1007/bf00934767
  7. W. Huang, Optimization algorithms on Riemannian manifolds with applications, Ph.D. thesis, Department of Mathematics, Florida State University (2013)
  8. Huang Wen, Absil P.-A., Gallivan K. A., A Riemannian symmetric rank-one trust-region method, 10.1007/s10107-014-0765-1
  9. Huang Wen, Gallivan K. A., Absil P.-A., A Broyden Class of Quasi-Newton Methods for Riemannian Optimization, 10.1137/140955483
  10. Li Dong-Hui, Fukushima Masao, A modified BFGS method and its global convergence in nonconvex minimization, 10.1016/s0377-0427(00)00540-9
  11. Li Dong-Hui, Fukushima Masao, On the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems, 10.1137/s1052623499354242
  12. J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. (Springer, New York, 2006)
  13. Ring Wolfgang, Wirth Benedikt, Optimization Methods on Riemannian Manifolds and Their Application to Shape Space, 10.1137/11082885x
  14. Savas Berkant, Lim Lek-Heng, Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors, 10.1137/090763172
  15. M. Seibert, M. Kleinsteuber, K. Hüper, Properties of the BFGS method on Riemannian manifolds. Mathematical System Theory – Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday (2013), pp. 395–412
  16. Theis Fabian J., Cason Thomas P., Absil P. -A., Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold, Independent Component Analysis and Signal Separation (2009) ISBN:9783642005985 p.354-361, 10.1007/978-3-642-00599-2_45