User menu

Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?

Bibliographic reference Bianco, John ; De Berdt, Pauline ; Deumens, Ronald ; des Rieux, Anne. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?. In: Cellular and Molecular Life Sciences, (2016)
Permanent URL http://hdl.handle.net/2078.1/172569
  1. Furlan Julio C., Sakakibara Brodie M., Miller William C., Krassioukov Andrei V., Global Incidence and Prevalence of Traumatic Spinal Cord Injury, 10.1017/s0317167100014530
  2. Lee B B, Cripps R A, Fitzharris M, Wing P C, The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate, 10.1038/sc.2012.158
  3. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings M (2014) Global prevalence and incidence of traumatic spinal cord injury. Clinical Epidemiology 6:309–331
  4. Jensen Mark P., Kuehn Carrie M., Amtmann Dagmar, Cardenas Diane D., Symptom Burden in Persons With Spinal Cord Injury, 10.1016/j.apmr.2007.02.002
  5. Thomas C. K., Bakels R., Klein C. S., Zijdewind I., Human spinal cord injury: motor unit properties and behaviour, 10.1111/apha.12153
  6. Krishna Vibhor, Andrews Hampton, Varma Abhay, Mintzer Jacobo, Kindy Mark S., Guest James, Spinal Cord Injury: How Can We Improve the Classification and Quantification of Its Severity and Prognosis?, 10.1089/neu.2013.2982
  7. David S, Aguayo A., Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats, 10.1126/science.6171034
  8. Li Y, Raisman G (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 14(7):4050–4063
  9. Kanno H., Pressman Y., Moody A., Berg R., Muir E. M., Rogers J. H., Ozawa H., Itoi E., Pearse D. D., Bunge M. B., Combination of Engineered Schwann Cell Grafts to Secrete Neurotrophin and Chondroitinase Promotes Axonal Regeneration and Locomotion after Spinal Cord Injury, 10.1523/jneurosci.2661-13.2014
  10. Tetzlaff Wolfram, Okon Elena B., Karimi-Abdolrezaee Soheila, Hill Caitlin E., Sparling Joseph S., Plemel Jason R., Plunet Ward T., Tsai Eve C., Baptiste Darryl, Smithson Laura J., Kawaja Michael D., Fehlings Michael G., Kwon Brian K., A Systematic Review of Cellular Transplantation Therapies for Spinal Cord Injury, 10.1089/neu.2009.1177
  11. Imaizumi T, Lankford K, Kocsis J, Sasaki M, Akiyama Y, Hashi K (2000) Comparison of myelin-forming cells as candidates for therapeutic transplantation in demyelinated CNS axons. Nō To Shinkei 52(7):609–615
  12. Golden Kevin L., Pearse Damien D., Blits Bas, Garg Maneesh S., Oudega Martin, Wood Patrick M., Bunge Mary Bartlett, Transduced Schwann cells promote axon growth and myelination after spinal cord injury, 10.1016/j.expneurol.2007.06.023
  13. Li Y., Repair of Adult Rat Corticospinal Tract by Transplants of Olfactory Ensheathing Cells, 10.1126/science.277.5334.2000
  14. Rapalino O., Lazarov-Spiegler O., Agranov E., Velan G.J., Yoles E., Fraidakis M., Soloman A., Gepstein R., Katz A., Belkin M., Hadani M., Schwartz M., Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, 10.1038/nm0798-814
  15. Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen IR, Schwartz M, Autoimmune T cells as potential neuroprotective therapy for spinal cord injury, 10.1016/s0140-6736(99)05140-5
  16. .Rao Y.J, Zhu W.X., Du Z.Q., Jia C.X., Du T.X., Zhao Q.A., Cao X.Y., Wang Y.J., Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury, 10.4238/2014.may.30.7
  17. Iwatsuki Koichi, Yoshimine Toshiki, Kishima Haruhiko, Aoki Masanori, Yoshimura Kazuhiro, Ishihara Masahiro, Ohnishi Yuichiro, Lima Carlos, Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats : , 10.1097/wnr.0b013e328305b70b
  18. Xiang Liangbi, Liu Jun, Zhang Li, Wang Qi, Chen Yu, Yu Haiong, Ma Junxiong, Guo Mingming, Piao Meihui, Meta analysis of olfactory ensheathing cell transplantation promoting functional recovery of motor nerves in rats with complete spinal cord transection, 10.4103/1673-5374.143434
  19. Ramón-Cueto Almudena, Cordero M.Isabel, Santos-Benito Fernando F., Avila Jesús, Functional Recovery of Paraplegic Rats and Motor Axon Regeneration in Their Spinal Cords by Olfactory Ensheathing Glia, 10.1016/s0896-6273(00)80905-8
  20. Bregman Barbara S., Kunkel-Bagden Ellen, Schnell Lisa, Dai Hai Ning, Gao Da, Schwab Martin E., Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors, 10.1038/378498a0
  21. Bradbury Elizabeth J., Moon Lawrence D. F., Popat Reena J., King Von R., Bennett Gavin S., Patel Preena N., Fawcett James W., McMahon Stephen B., Chondroitinase ABC promotes functional recovery after spinal cord injury, 10.1038/416636a
  22. Yu Panpan, Huang Lidong, Zou Jian, Yu Zhihua, Wang Yanxia, Wang Xiaofei, Xu Liang, Liu Xinqiu, Xu Xiao-Ming, Lu Pei-Hua, Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats, 10.1016/j.nbd.2008.09.012
  23. Zhai Peng, Chen X B, Schreyer David J, Anin vitrostudy of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth, 10.1088/1748-6041/10/4/045016
  24. Hauben E., Ibarra A., Mizrahi T., Barouch R., Agranov E., Schwartz M., Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: Comparison with other myelin antigens, 10.1073/pnas.011585298
  25. Bregman Barbara S., McAtee Marietta, Dai Hai Ning, Kuhn Penelope L., Neurotrophic Factors Increase Axonal Growth after Spinal Cord Injury and Transplantation in the Adult Rat, 10.1006/exnr.1997.6705
  26. Elliott Donaghue Irja, Tator Charles H., Shoichet Molly S., Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord, 10.1039/c4bm00311j
  27. Rabchevsky A.G., Fugaccia I., Turner A.F., Blades D.A., Mattson M.P., Scheff S.W., Basic Fibroblast Growth Factor (bFGF) Enhances Functional Recovery Following Severe Spinal Cord Injury to the Rat, 10.1006/exnr.2000.7399
  28. Chen Bo, He Jianyu, Yang Hao, Zhang Qian, Zhang Lingling, Zhang Xian, Xie En, Liu Cuicui, Zhang Rui, Wang Yi, Huang Linhong, Hao Dingjun, Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats, 10.1038/srep09017
  29. R. Dolbow David, S. Gorgey Ashraf, C. Recio Albert, A. Stiens Steven, C. Curry Amanda, L. Sadowsky Cristina, R. Gater David, Martin Rebecca, W. McDonald John, Activity-Based Restorative Therapies after Spinal Cord Injury: Inter-institutional conceptions and perceptions, 10.14336/ad.2014.1105
  30. Edgerton Victor Reggie, Harkema Susan, Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges, 10.1586/ern.11.129
  31. Lu Paul, Tuszynski Mark H., Growth factors and combinatorial therapies for CNS regeneration, 10.1016/j.expneurol.2007.08.004
  32. Cheng H., Cao Y., Olson L., Spinal Cord Repair in Adult Paraplegic Rats: Partial Restoration of Hind Limb Function, 10.1126/science.273.5274.510
  33. Tsai Eve C., Krassioukov Andrei V., Tator Charles H., Corticospinal Regeneration into Lumbar Grey Matter Correlates with Locomotor Recovery after Complete Spinal Cord Transection and Repair with Peripheral Nerve Grafts, Fibroblast Growth Factor 1, Fibrin Glue, and Spinal Fusion, 10.1093/jnen/64.3.230
  34. Nash H, Borke R, Anders J (2002) Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 22(16):7111–7120
  35. Kubasak Marc D., Jindrich Devin L., Zhong Hui, Takeoka Aya, McFarland Kimberly C., Muñoz-Quiles Cintia, Roy Roland R., Edgerton V. Reggie, Ramón-Cueto Almudena, Phelps Patricia E., OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats, 10.1093/brain/awm267
  36. Wang Ling-Jie, Zhang Rui-Ping, Li Jian-Ding, Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury, 10.1007/s00701-014-2089-6
  37. Godinho Maria João, Teh Lip, Pollett Margaret A., Goodman Douglas, Hodgetts Stuart I., Sweetman Iain, Walters Mark, Verhaagen Joost, Plant Giles W., Harvey Alan R., Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3, 10.1371/journal.pone.0069987
  38. Assunção-Silva Rita C., Gomes Eduardo D., Sousa Nuno, Silva Nuno A., Salgado António J., Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration, 10.1155/2015/948040
  39. Germain Loïc, De Berdt Pauline, Vanacker Julie, Leprince Julian, Diogenes Anibal, Jacobs Damien, Vandermeulen Gaëlle, Bouzin Caroline, Préat Véronique, Dupont-Gillain Christine, des Rieux Anne, Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine, 10.2217/rme.14.81
  40. Seifalian AlexanderMarcus, Tsintou Magdalini, Dalamagkas Kyriakos, Advances in regenerative therapies for spinal cord injury: a biomaterials approach, 10.4103/1673-5374.156966
  41. Phinney Donald G., Prockop Darwin J., Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair-Current Views, 10.1634/stemcells.2007-0637
  42. Liu S., Qu Y., Stewart T. J., Howard M. J., Chakrabortty S., Holekamp T. F., McDonald J. W., Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation, 10.1073/pnas.97.11.6126
  43. Cao Qilin, Benton Richard L., Whittemore Scott R., Stem cell repair of central nervous system injury, 10.1002/jnr.10240
  44. Oh Jinsoo, Lee Kang-In, Kim Hyeong-Taek, You Youngsang, Yoon Do Heum, Song Ki Yeong, Cheong Eunji, Ha Yoon, Hwang Dong-Youn, Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury, 10.1186/s13287-015-0118-x
  45. Lu Paul, Lee-Kubli CorinneA, Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury, 10.4103/1673-5374.150638
  46. Sareen Dhruv, Gowing Geneviève, Sahabian Anais, Staggenborg Kevin, Paradis Renée, Avalos Pablo, Latter Jessica, Ornelas Loren, Garcia Leslie, Svendsen Clive N., Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord : Human neural progenitor cells, 10.1002/cne.23578
  47. Wang Su, Bates Janna, Li Xiaojie, Schanz Steven, Chandler-Militello Devin, Levine Corri, Maherali Nimet, Studer Lorenz, Hochedlinger Konrad, Windrem Martha, Goldman Steven A., Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination, 10.1016/j.stem.2012.12.002
  48. Takahashi Kazutoshi, Yamanaka Shinya, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, 10.1016/j.cell.2006.07.024
  49. Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors, 10.1126/science.1164270
  50. Mozafari Sabah, Laterza Cecilia, Roussel Delphine, Bachelin Corinne, Marteyn Antoine, Deboux Cyrille, Martino Gianvito, Evercooren Anne Baron-Van, Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice, 10.1172/jci80437
  51. Akiyama Yukinori, Honmou Osamu, Kato Takaaki, Uede Teiji, Hashi Kazuo, Kocsis Jeffery D., Transplantation of Clonal Neural Precursor Cells Derived from Adult Human Brain Establishes Functional Peripheral Myelin in the Rat Spinal Cord, 10.1006/exnr.2000.7539
  52. Mothe Andrea J., Tator Charles H., Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination, 10.1016/j.expneurol.2008.05.024
  53. Himes B. Timothy, Liu Yi, Solowska Joanna M., Snyder Evan Y., Fischer Itzhak, Tessler Alan, Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats, 10.1002/jnr.1185
  54. Liu Y., Himes B.T., Solowska J., Moul J., Chow S.Y., Park K.I., Tessler A., Murray M., Snyder E.Y., Fischer I., Intraspinal Delivery of Neurotrophin-3 Using Neural Stem Cells Genetically Modified by Recombinant Retrovirus, 10.1006/exnr.1999.7079
  55. Syková Eva, Homola Aleš, Mazanec Radim, Lachmann Hynek, Langkramer Konrádová Šimona, Kobylka Petr, Pádr Radek, Neuwirth Jiří, Komrska Vladimiŕ, Vávra Vladimiŕ, Štulík Jan, Bojar Martin, Autologous Bone Marrow Transplantation in Patients With Subacute and Chronic Spinal Cord Injury, 10.3727/000000006783464381
  56. Mannoji C, Koda M, Kamiya K, Dezawa M, Hashimoto M, Furuya T, Okawa A, Takahashi K, Yamazaki M (2014) Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp 74(4):479–488
  57. Akiyama Yukinori, Radtke Christine, Honmou Osamu, Kocsis Jeffery D., Remyelination of the spinal cord following intravenous delivery of bone marrow cells, 10.1002/glia.10102
  58. da Silva Meirelles L., Mesenchymal stem cells reside in virtually all post-natal organs and tissues, 10.1242/jcs.02932
  59. Kang Soo-Kyung, Shin Myung-Joo, Jung Jin Sup, Kim Yong Geun, Kim Cheul-Hong, Autologous Adipose Tissue-derived Stromal Cells for Treatment of Spinal Cord Injury, 10.1089/scd.2006.15.583
  60. Dong Yuzhen, Yang Libin, Yang Lin, Zhao Hongxing, Zhang Chao, Wu Dapeng, Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury, 10.4103/1673-5374.139478
  61. Shi S., Robey P.G., Gronthos S., Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis, 10.1016/s8756-3282(01)00612-3
  62. Arthur Agnieszka, Shi Songtao, Zannettino Andrew C. W., Fujii Nobutaka, Gronthos Stan, Koblar Simon A., Implanted Adult Human Dental Pulp Stem Cells Induce Endogenous Axon Guidance, 10.1002/stem.138
  63. de Almeida Fernanda Martins, Marques Suelen Adriani, Ramalho Bruna dos Santos, Rodrigues Rafaela Fintelman, Cadilhe Daniel Veloso, Furtado Daniel, Kerkis Irina, Pereira Lygia Veiga, Rehen Stevens Kastrup, Martinez Ana Maria Blanco, Human Dental Pulp Cells: A New Source of Cell Therapy in a Mouse Model of Compressive Spinal Cord Injury, 10.1089/neu.2010.1317
  64. Pomerat C.M., Contino R.M., The cultivation of dental tissues, 10.1016/0030-4220(65)90408-1
  65. Gronthos S., Mankani M., Brahim J., Robey P. G., Shi S., Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo, 10.1073/pnas.240309797
  66. Miura M., Gronthos S., Zhao M., Lu B., Fisher L. W., Robey P. G., Shi S., SHED: Stem cells from human exfoliated deciduous teeth, 10.1073/pnas.0937635100
  67. Seo Byoung-Moo, Miura Masako, Gronthos Stan, Mark Bartold Peter, Batouli Sara, Brahim Jaime, Young Marian, Gehron Robey Pamela, Wang Cun Yu, Shi Songtao, Investigation of multipotent postnatal stem cells from human periodontal ligament, 10.1016/s0140-6736(04)16627-0
  68. Morsczeck C., Götz W., Schierholz J., Zeilhofer F., Kühn U., Möhl C., Sippel C., Hoffmann K.H., Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth, 10.1016/j.matbio.2004.12.004
  69. Sonoyama Wataru, Liu Yi, Fang Dianji, Yamaza Takayoshi, Seo Byoung-Moo, Zhang Chunmei, Liu He, Gronthos Stan, Wang Cun-Yu, Shi Songtao, Wang Songlin, Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine, 10.1371/journal.pone.0000079
  70. Ikeda Etsuko, Yagi Kiyohito, Kojima Midori, Yagyuu Takahiro, Ohshima Akira, Sobajima Satoshi, Tadokoro Mika, Katsube Yoshihiro, Isoda Katsuhiro, Kondoh Masuo, Kawase Masaya, Go Masahiro J, Adachi Hisashi, Yokota Yukiharu, Kirita Tadaaki, Ohgushi Hajime, Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease, 10.1111/j.1432-0436.2007.00245.x
  71. Zhang Q., Shi S., Liu Y., Uyanne J., Shi Y., Shi S., Le A. D., Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis, 10.4049/jimmunol.0902318
  72. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen M, Pitaru S (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28(5):984–995
  73. Liu Junjun, Yu Fang, Sun Yao, Jiang Beizhan, Zhang Wenjun, Yang Jianhua, Xu Guo-Tong, Liang Aibin, Liu Shangfeng, Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells : An Overview of Human Dental Tissue-Derived MSCs, 10.1002/stem.1909
  74. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C, Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, 10.1080/14653240600855905
  75. Egusa Hiroshi, Sonoyama Wataru, Nishimura Masahiro, Atsuta Ikiru, Akiyama Kentaro, Stem cells in dentistry – Part I: Stem cell sources, 10.1016/j.jpor.2012.06.001
  76. Nakamura Sayaka, Yamada Yoichi, Katagiri Wataru, Sugito Takayuki, Ito Kenji, Ueda Minoru, Stem Cell Proliferation Pathways Comparison between Human Exfoliated Deciduous Teeth and Dental Pulp Stem Cells by Gene Expression Profile from Promising Dental Pulp, 10.1016/j.joen.2009.07.024
  77. Sonoyama Wataru, Liu Yi, Yamaza Takayoshi, Tuan Rocky S., Wang Songlin, Shi Songtao, Huang George T.-J., Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study, 10.1016/j.joen.2007.11.021
  78. Huang George T.-J., Sonoyama Wataru, Liu Yi, Liu He, Wang Songlin, Shi Songtao, The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering, 10.1016/j.joen.2008.03.001
  79. Wang Xi, Sha Xin-Jia, Li Guang-Hui, Yang Fu-Sheng, Ji Kun, Wen Ling-Ying, Liu Shi-Yu, Chen Lei, Ding Yin, Xuan Kun, Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells, 10.1016/j.archoralbio.2012.02.014
  80. Yang Hao, Gao Li-Na, An Ying, Hu Cheng-Hu, Jin Fang, Zhou Jun, Jin Yan, Chen Fa-Ming, Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions, 10.1016/j.biomaterials.2013.05.025
  81. Tomar Geetanjali B., Srivastava Rupesh K., Gupta Navita, Barhanpurkar Amruta P., Pote Satish T., Jhaveri Hiral M., Mishra Gyan C., Wani Mohan R., Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine, 10.1016/j.bbrc.2010.01.126
  82. Dupin Elisabeth, Sommer Lukas, Neural crest progenitors and stem cells: From early development to adulthood, 10.1016/j.ydbio.2012.02.035
  83. Mayor R., Theveneau E., The neural crest, 10.1242/dev.091751
  84. Jessen Kristján R., Mirsky Rhona, Lloyd Alison C., Schwann Cells: Development and Role in Nerve Repair, 10.1101/cshperspect.a020487
  85. Techawattanawisal Wanida, Nakahama Kenichi, Komaki Motohiro, Abe Mayumi, Takagi Yuzo, Morita Ikuo, Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system, 10.1016/j.bbrc.2007.04.031
  86. Kaltschmidt Barbara, Kaltschmidt Christian, Widera Darius, Adult Craniofacial Stem Cells: Sources and Relation to the Neural Crest, 10.1007/s12015-011-9340-9
  87. Janebodin Kajohnkiart, Horst Orapin V., Ieronimakis Nicholas, Balasundaram Gayathri, Reesukumal Kanit, Pratumvinit Busadee, Reyes Morayma, Isolation and Characterization of Neural Crest-Derived Stem Cells from Dental Pulp of Neonatal Mice, 10.1371/journal.pone.0027526
  88. Achilleos Annita, Trainor Paul A, Neural crest stem cells: discovery, properties and potential for therapy, 10.1038/cr.2012.11
  89. Kaukua Nina, Shahidi Maryam Khatibi, Konstantinidou Chrysoula, Dyachuk Vyacheslav, Kaucka Marketa, Furlan Alessandro, An Zhengwen, Wang Longlong, Hultman Isabell, Ährlund-Richter Lars, Blom Hans, Brismar Hjalmar, Lopes Natalia Assaife, Pachnis Vassilis, Suter Ueli, Clevers Hans, Thesleff Irma, Sharpe Paul, Ernfors Patrik, Fried Kaj, Adameyko Igor, Glial origin of mesenchymal stem cells in a tooth model system, 10.1038/nature13536
  90. Yamauchi J., Chan J. R., Shooter E. M., Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway, 10.1073/pnas.2336152100
  91. Tomita Koichi, Kubo Tateki, Matsuda Ken, Fujiwara Toshihiro, Yano Kenji, Winograd Jonathan M., Tohyama Masaya, Hosokawa Ko, The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury, 10.1002/glia.20533
  92. Waddington Rachel J., Youde Sarah J., Lee Chi P., Sloan Alastair J., Isolation of Distinct Progenitor Stem Cell Populations from Dental Pulp, 10.1159/000151447
  93. Abe Shigehiro, Hamada Keiichi, Miura Masahiko, Yamaguchi Satoshi, Neural crest stem cell property of apical pulp cells derived from human developing tooth, 10.1042/cbi20110506
  94. Martens W., Wolfs E., Struys T., Politis C., Bronckaers A., Lambrichts I., Expression Pattern of Basal Markers in Human Dental Pulp Stem Cells and Tissue, 10.1159/000338654
  95. Huang Eric J, Reichardt Louis F, Neurotrophins: Roles in Neuronal Development and Function, 10.1146/annurev.neuro.24.1.677
  96. Meeker RickB, Williams KimberlyS, The p75 neurotrophin receptor: at the crossroad of neural repair and death, 10.4103/1673-5374.156967
  97. Chu G.K.T., Yu W., Fehlings M.G., The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury, 10.1016/j.neuroscience.2007.05.028
  98. Lindsley Andrew, Snider Paige, Zhou Hongming, Rogers Rhonda, Wang Jian, Olaopa Michael, Kruzynska-Frejtag Agnieszka, Koushik Shrinagesh V., Lilly Brenda, Burch John B.E., Firulli Anthony B., Conway Simon J., Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer, 10.1016/j.ydbio.2007.04.041
  99. Matsuzawa M., Arai C., Nomura Y., Murata T., Yamakoshi Y., Oida S., Hanada N., Nakamura Y., Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway, 10.1111/jre.12277
  100. Wiesen Robert M., Padial-Molina Miguel, Volk Sarah L., McDonald Neville, Chiego Daniel, Botero Tatiana, Rios Hector F., The expression of periostin in dental pulp cells, 10.1016/j.archoralbio.2015.02.008
  101. Sonnenberg-Riethmacher E., Miehe M., Riethmacher D., Promotion of periostin expression contributes to the migration of Schwann cells, 10.1242/jcs.174177
  102. Martens W., Sanen K., Georgiou M., Struys T., Bronckaers A., Ameloot M., Phillips J., Lambrichts I., Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro, 10.1096/fj.13-243980
  103. Hammarberg H., Piehl F., Cullheim S., Fjell J., Hökfelt T, Fried K., GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury : , 10.1097/00001756-199603220-00004
  104. Bär K J., F. Saldanha G J., Kennedy A J., Facer P, Birch R, Carlstedt T, Anand P, GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia : , 10.1097/00001756-199801050-00009
  105. Höke Ahmet, Cheng Chu, Zochodne Douglas W., Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats : , 10.1097/00001756-200006050-00011
  106. Tannemaat Martijn R., Eggers Ruben, Hendriks William T., de Ruiter Godard C. W., van Heerikhuize Joop J., Pool Chris W., Malessy Martijn J. A., Boer Gerard J., Verhaagen Joost, Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve, 10.1111/j.1460-9568.2008.06452.x
  107. Piquilloud Gaël, Christen Thierry, Pfister Lukas A., Gander Bruno, Papaloïzos Michaël Y., Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs : Controlled release of GDNF in rat primary nerve repairs, 10.1111/j.1460-9568.2007.05748.x
  108. Fernández Vallone V.B., Romaniuk M.A., Choi H., Labovsky V., Otaegui J., Chasseing N.A., Mesenchymal stem cells and their use in therapy: What has been achieved?, 10.1016/j.diff.2012.08.004
  109. Ganz Javier, Arie Ina, Ben-Zur Tali, Dadon-Nachum Michal, Pour Sammy, Araidy Shareef, Pitaru Sandu, Offen Daniel, Astrocyte-Like Cells Derived From Human Oral Mucosa Stem Cells Provide Neuroprotection In Vitro and In Vivo, 10.5966/sctm.2013-0074
  110. Ganz Javier, Arie Ina, Buch Sigal, Zur Tali Ben, Barhum Yael, Pour Sammy, Araidy Shareef, Pitaru Sandu, Offen Daniel, Dopaminergic-Like Neurons Derived from Oral Mucosa Stem Cells by Developmental Cues Improve Symptoms in the Hemi-Parkinsonian Rat Model, 10.1371/journal.pone.0100445
  111. Jarmalavičiūtė Akvilė, Tunaitis Virginijus, Pivoraitė Ugnė, Venalis Algirdas, Pivoriūnas Augustas, Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis, 10.1016/j.jcyt.2014.07.013
  112. Sasaki Ryo, Aoki Shunsuke, Yamato Masayuki, Uchiyama Hiroto, Wada Keiji, Okano Teruo, Ogiuchi Hideki, Tubulation with Dental Pulp Cells Promotes Facial Nerve Regeneration in Rats, 10.1089/ten.tea.2007.0157
  113. Sasaki Ryo, Aoki Shunsuke, Yamato Masayuki, Uchiyama Hiroto, Wada Keiji, Ogiuchi Hideki, Okano Teruo, Ando Tomohiro, PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration, 10.1002/term.387
  114. Sasaki Ryo, Matsumine Hajime, Watanabe Yorikatsu, Takeuchi Yuichi, Yamato Masayuki, Okano Teruo, Miyata Mariko, Ando Tomohiro, Electrophysiologic and Functional Evaluations of Regenerated Facial Nerve Defects with a Tube Containing Dental Pulp Cells in Rats : , 10.1097/prs.0000000000000602
  115. Tseng Ling-Shu, Chen Sheng-Hsien, Lin Mao-Tsun, Lin Ying-Chu, Transplantation of Human Dental Pulp-Derived Stem Cells Protects against Heatstroke in Mice, 10.3727/096368914x678580
  116. Sugiyama Masahiko, Iohara Koichiro, Wakita Hideaki, Hattori Hisashi, Ueda Minoru, Matsushita Kenji, Nakashima Misako, Dental Pulp-Derived CD31−/CD146−Side Population Stem/Progenitor Cells Enhance Recovery of Focal Cerebral Ischemia in Rats, 10.1089/ten.tea.2010.0306
  117. Sugiyama Masahiko, Hattori Hisashi, Inoue Takanori, Wakita Hideaki, Hibi Hideharu, Ueda Minoru, Stem cells from human exfoliated deciduous teeth enhance recovery from focal cerebral ischemia in rats, 10.1016/j.ajoms.2013.04.014
  118. Inoue Takanori, Sugiyama Masahiko, Hattori Hisashi, Wakita Hideaki, Wakabayashi Toshihiko, Ueda Minoru, Stem Cells from Human Exfoliated Deciduous Tooth-Derived Conditioned Medium Enhance Recovery of Focal Cerebral Ischemia in Rats, 10.1089/ten.tea.2011.0385
  119. Iohara Koichiro, Zheng Li, Wake Hiroaki, Ito Masataka, Nabekura Junichi, Wakita Hideaki, Nakamura Hiroshi, Into Takeshi, Matsushita Kenji, Nakashima Misako, A Novel Stem Cell Source for Vasculogenesis in Ischemia: Subfraction of Side Population Cells from Dental Pulp, 10.1634/stemcells.2008-0393
  120. Mead Ben, Logan Ann, Berry Martin, Leadbeater Wendy, Scheven Ben A., Intravitreally Transplanted Dental Pulp Stem Cells Promote Neuroprotection and Axon Regeneration of Retinal Ganglion Cells After Optic Nerve Injury, 10.1167/iovs.13-13045
  121. Mead Ben, Logan Ann, Berry Martin, Leadbeater Wendy, Scheven Ben A., Paracrine-Mediated Neuroprotection and Neuritogenesis of Axotomised Retinal Ganglion Cells by Human Dental Pulp Stem Cells: Comparison with Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells, 10.1371/journal.pone.0109305
  122. Casagrande Luciano, Cordeiro Mabel M., Nör Silvia A., Nör Jacques E., Dental pulp stem cells in regenerative dentistry, 10.1007/s10266-010-0154-z
  123. Gandia Carolina, Armiñan Ana, García-Verdugo Jose Manuel, Lledó Elisa, Ruiz Amparo, Miñana M Dolores, Sanchez-Torrijos Jorge, Payá Rafael, Mirabet Vicente, Carbonell-Uberos Francisco, Llop Mauro, Montero Jose Anastasio, Sepúlveda Pilar, Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction, 10.1634/stemcells.2007-0484
  124. Govindasamy V., Ronald V.S., Abdullah A.N., Nathan K.R. Ganesan, Ab. Aziz Z.A.C., Abdullah M., Musa S., Kasim N.H. Abu, Bhonde R.R, Differentiation of Dental Pulp Stem Cells into Islet-like Aggregates, 10.1177/0022034510396879
  125. Kerkis Irina, Ambrosio Carlos E, Kerkis Alexandre, Martins Daniele S, Zucconi Eder, Fonseca Simone AS, Cabral Rosa M, Maranduba Carlos MC, Gaiad Thais P, Morini Adriana C, Vieira Natassia M, Brolio Marina P, Sant'Anna Osvaldo A, Miglino Maria A, Zatz Mayana, Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?, 10.1186/1479-5876-6-35
  126. Yang Rujing, Chen Mo, Lee Chang Hun, Yoon Richard, Lal Shan, Mao Jeremy J., Clones of Ectopic Stem Cells in the Regeneration of Muscle Defects In Vivo, 10.1371/journal.pone.0013547
  127. Monteiro B. G., Serafim R. C., Melo G. B., Silva M. C. P., Lizier N. F., Maranduba C. M. C., Smith R. L., Kerkis A., Cerruti H., Gomes J. A. P., Kerkis I., Human immature dental pulp stem cells share key characteristic features with limbal stem cells, 10.1111/j.1365-2184.2009.00623.x
  128. Tropepe Vincent, Sibilia Maria, Ciruna Brian G., Rossant Janet, Wagner Erwin F., van der Kooy Derek, Distinct Neural Stem Cells Proliferate in Response to EGF and FGF in the Developing Mouse Telencephalon, 10.1006/dbio.1998.9192
  129. Reynolds B., Weiss S, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, 10.1126/science.1553558
  130. Coutu Daniel L., Galipeau Jacques, Roles of FGF signaling in stem cell self-renewal, senescence and aging, 10.18632/aging.100369
  131. Salehinejad Parvin, Alitheen Noorjahan Banu, Mandegary Ali, Nematollahi-mahani Seyed Noureddin, Janzamin Ehsan, Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells, 10.1007/s11626-013-9631-3
  132. Bressan Raul Bardini, Melo Fernanda Rosene, Almeida Patricia Alves, Bittencourt Denise Avani, Visoni Silvia, Jeremias Talita Silva, Costa Ana Paula, Leal Rodrigo Bainy, Trentin Andrea Gonçalves, EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs), 10.1016/j.yexcr.2014.05.020
  133. Schwindt Telma T., Motta Fabiana L., Gabriela F. Barnabé, Cristina G. Massant, Guimarães Alessander O., Calcagnotto Maria Elisa, Pesquero João B., Mello Luiz E., Effects of FGF-2 and EGF removal on the differentiationof mouse neural precursor cells, 10.1590/s0001-37652009000300009
  134. Kelly Claire M., Tyers Pam, Borg Melanie ter, Svendsen Clive N., Dunnett Stephen B., Rosser Anne E., EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS, 10.1016/j.brainresbull.2005.08.020
  135. Xian Cory, J., EGF family of growth factors: essential roles and functional redundancy in the nerve system, 10.2741/1210
  136. Represa Alfonso, Shimazaki Takuya, Simmonds Matthew, Weiss Samuel, EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord : Neural stem cells in the developing spinal cord, 10.1046/j.0953-816x.2001.01660.x
  137. Hugnot Jean-Philippe, Isolate and Culture Neural Stem Cells from the Mouse Adult Spinal Cord, Methods in Molecular Biology (2013) ISBN:9781627035736 p.53-63, 10.1007/978-1-62703-574-3_5
  138. Bauchet Luc, Lonjon Nicolas, Vachiery-Lahaye Florence, Boularan Alain, Privat Alain, Hugnot Jean-Philippe, Isolation and Culture of Precursor Cells from the Adult Human Spinal Cord, Methods in Molecular Biology (2013) ISBN:9781627035736 p.87-93, 10.1007/978-1-62703-574-3_8
  139. Trubiani Oriana, Zalzal Sylvia Francis, Paganelli Roberto, Marchisio Marco, Giancola Raffaella, Pizzicannella Jacopo, Bühring Hans-Jörg, Piattelli Maurizio, Caputi Sergio, Nanci Antonio, Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells, 10.1002/jcp.22203
  140. Paschalidis Theodoros, Bakopoulou Athina, Papa Polyxeni, Leyhausen Gabriele, Geurtsen Werner, Koidis Petros, Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity, 10.1016/j.dental.2014.08.377
  141. Demircan Pinar Cetinalp, Sariboyaci Ayla Eker, Unal Zehra Seda, Gacar Gulcin, Subasi Cansu, Karaoz Erdal, Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems, 10.3109/14653249.2011.605351
  142. Hamanoue M., Takemoto N., Matsumoto K., Nakamura T., Nakajima K., Kohsaka S., Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro, 10.1002/(sici)1097-4547(19960301)43:5<554::aid-jnr5>3.0.co;2-h
  143. Ebens Allen, Brose Katja, Leonardo E.David, Jr M.Gartz Hanson, Bladt Friedhelm, Birchmeier Carmen, Barres Barbara A, Tessier-Lavigne Marc, Hepatocyte Growth Factor/Scatter Factor Is an Axonal Chemoattractant and a Neurotrophic Factor for Spinal Motor Neurons, 10.1016/s0896-6273(00)80247-0
  144. Kitamura Kazuya, Iwanami Akio, Nakamura Masaya, Yamane Junichi, Watanabe Kota, Suzuki Yoshinori, Miyazawa Daisuke, Shibata Shinsuke, Funakoshi Hiroshi, Miyatake Shinichi, Coffin Robert S., Nakamura Toshikazu, Toyama Yoshiaki, Okano Hideyuki, Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury, 10.1002/jnr.21372
  145. Jeong Soo Ryeong, Kwon Min Jung, Lee Hwan Goo, Joe Eun Hye, Lee Jae Ho, Kim Sung Soo, Suh-Kim Haeyoung, Kim Byung G., Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury, 10.1016/j.expneurol.2011.10.021
  146. Zhang Ziyin, Guth Lloyd, Experimental Spinal Cord Injury: Wallerian Degeneration in the Dorsal Column Is Followed by Revascularization, Glial Proliferation, and Nerve Regeneration, 10.1006/exnr.1997.6590
  147. Casella Gizelda T.B., Marcillo Alexander, Bunge Mary Bartlett, Wood Patrick M., New Vascular Tissue Rapidly Replaces Neural Parenchyma and Vessels Destroyed by a Contusion Injury to the Rat Spinal Cord, 10.1006/exnr.2001.7827
  148. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934
  149. Ferrara Napoleone, Molecular and biological properties of vascular endothelial growth factor, 10.1007/s001099900019
  150. Strojny Chelsee, Boyle Michael, Bartholomew Amelia, Sundivakkam Premanand, Alapati Satish, Interferon Gamma–treated Dental Pulp Stem Cells Promote Human Mesenchymal Stem Cell Migration In Vitro, 10.1016/j.joen.2015.02.018
  151. Jin K., Zhu Y., Sun Y., Mao X. O., Xie L., Greenberg D. A., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo, 10.1073/pnas.182296499
  152. Krum J.M, Mani N, Rosenstein J.M, Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain, 10.1016/s0306-4522(01)00615-7
  153. Krum Janette M, Khaibullina Alfia, Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair, 10.1016/s0014-4886(03)00039-6
  154. des Rieux Anne, De Berdt Pauline, Ansorena Eduardo, Ucakar Bernard, Damien Jacobs, Schakman Olivier, Audouard Emilie, Bouzin Caroline, Auhl Dietmar, Simón-Yarza Teresa, Feron Olivier, Blanco-Prieto Maria J., Carmeliet Peter, Bailly Christian, Clotman Fréderic, Préat Véronique, Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord : Vegf-Loaded Injectable Hydrogel, 10.1002/jbm.a.34915
  155. Pelletier Julien, Roudier Emilie, Abraham Pierre, Fromy Bérengère, Saumet Jean Louis, Birot Olivier, Sigaudo-Roussel Dominique, VEGF-A Promotes Both Pro-angiogenic and Neurotrophic Capacities for Nerve Recovery After Compressive Neuropathy in Rats, 10.1007/s12035-014-8754-1
  156. Jiang Long, Zhu Ya-Qin, Du Rong, Gu Ying-Xin, Xia Lie, Qin Feng, Ritchie Helena H., The Expression and Role of Stromal Cell–derived Factor-1α–CXCR4 Axis in Human Dental Pulp, 10.1016/j.joen.2008.05.015
  157. Imitola J., Raddassi K., Park K. I., Mueller F.-J., Nieto M., Teng Y. D., Frenkel D., Li J., Sidman R. L., Walsh C. A., Snyder E. Y., Khoury S. J., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 /CXC chemokine receptor 4 pathway, 10.1073/pnas.0408258102
  158. Takeuchi Hiroki, Natsume Atsushi, Wakabayashi Toshihiko, Aoshima Chihiro, Shimato Shinji, Ito Motokazu, Ishii Jun, Maeda Yuka, Hara Masahito, Kim Seung U., Yoshida Jun, Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner, 10.1016/j.neulet.2007.08.048
  159. Carbajal K. S., Schaumburg C., Strieter R., Kane J., Lane T. E., Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis, 10.1073/pnas.1006375107
  160. Akazawa Y, Hasegawa T, Yoshimura Y, Chosa N, Asakawa T, Ueda K, Sugimoto A, Kitamura T, Nakagawa H, Ishisaki A, Iwamoto T (2015) Recruitment of mesenchymal stem cells by stromal cell-derived factor 1α in pulp cells from deciduous teeth. Int J Mol Med 36(2):442–448
  161. Jaerve Anne, Bosse Frank, Müller Hans Werner, SDF-1/CXCL12: Its role in spinal cord injury, 10.1016/j.biocel.2011.11.023
  162. Opatz Jessica, Küry Patrick, Schiwy Nora, Järve Anne, Estrada Veronica, Brazda Nicole, Bosse Frank, Müller Hans Werner, SDF-1 stimulates neurite growth on inhibitory CNS myelin, 10.1016/j.mcn.2008.11.002
  163. Dziembowska M., Tham T.N., Lau P., Vitry S., Lazarini F., Dubois-Dalcq M., A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors, 10.1002/glia.20170
  164. Carbajal Kevin S., Miranda Juan L., Tsukamoto Michelle R., Lane Thomas E., CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination, 10.1002/glia.21225
  165. Göttle Peter, Kremer David, Jander Sebastian, Ödemis Veysel, Engele Jürgen, Hartung Hans-Peter, Küry Patrick, Activation of CXCR7 receptor promotes oligodendroglial cell maturation, 10.1002/ana.22214
  166. Balabanian Karl, Lagane Bernard, Infantino Simona, Chow Ken Y. C., Harriague Julie, Moepps Barbara, Arenzana-Seisdedos Fernando, Thelen Marcus, Bachelerie Françoise, The Chemokine SDF-1/CXCL12 Binds to and Signals through the Orphan Receptor RDC1 in T Lymphocytes, 10.1074/jbc.m508234200
  167. Williams Jessica L., Patel Jigisha R., Daniels Brian P., Klein Robyn S., Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system, 10.1084/jem.20131224
  168. Shyu W.-C., Lin S.-Z., Yen P.-S., Su C.-Y., Chen D.-C., Wang H.-J., Li H., Stromal Cell-Derived Factor-1  Promotes Neuroprotection, Angiogenesis, and Mobilization/Homing of Bone Marrow-Derived Cells in Stroke Rats, 10.1124/jpet.107.127746
  169. Nishiyama Akiko, Polydendrocytes: NG2 Cells with Many Roles in Development and Repair of the CNS, 10.1177/1073858406295586
  170. Calver Andrew R, Hall Anita C, Yu Wei-Ping, Walsh Frank S, Heath John K, Betsholtz Christer, Richardson William D, Oligodendrocyte Population Dynamics and the Role of PDGF In Vivo, 10.1016/s0896-6273(00)80469-9
  171. Hu J.-G., Fu S.-L., Wang Y.-X., Li Y., Jiang X.-Y., Wang X.-F., Qiu M.-S., Lu P.-H., Xu X.-M., Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway, 10.1016/j.neuroscience.2007.10.050
  172. Armstrong R. C., Harvath L., Dubois-Dalcq M. E., Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules, 10.1002/jnr.490270319
  173. Woodruff Rachel H, Fruttiger Marcus, Richardson William D, Franklin Robin J.M, Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination, 10.1016/j.mcn.2003.10.014
  174. Derringer K.A, Linden R.W.A, Vascular endothelial growth factor, fibroblast growth factor 2, platelet derived growth factor and transforming growth factor beta released in human dental pulp following orthodontic force, 10.1016/j.archoralbio.2004.02.011
  175. Tran-Hung L., Laurent P., Camps J., About I., Quantification of angiogenic growth factors released by human dental cells after injury, 10.1016/j.archoralbio.2007.07.001
  176. Vora Parvez, Pillai Prakash, Mustapha Joumana, Kowal Cory, Shaffer Seth, Bose Ratna, Namaka Mike, Frost Emma E., CXCL1 regulation of oligodendrocyte progenitor cell migration is independent of calcium signaling, 10.1016/j.expneurol.2012.04.012
  177. Vora Parvez, Pillai Prakash P., Zhu Wenjun, Mustapha Joumana, Namaka Michael P., Frost Emma E., Differential effects of growth factors on oligodendrocyte progenitor migration, 10.1016/j.ejcb.2011.03.006
  178. Murtie Joshua C., Zhou Yong-Xing, Le Tuan Q., Vana Adam C., Armstrong Regina C., PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination, 10.1016/j.nbd.2004.12.006
  179. Redwine Jeffrey M., Blinder Karen L., Armstrong Regina C., In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system, 10.1002/(sici)1097-4547(19971015)50:2<229::aid-jnr11>3.0.co;2-3
  180. Bloom F (1996) Neurotransmission and the central nervous system. In: Hardman J, Limbird L, Molinoff P, Ruddon R, Gilman A (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 267–294
  181. Boyd J. Gordon, Gordon Tessa, Neurotrophic Factors and Their Receptors in Axonal Regeneration and Functional Recovery After Peripheral Nerve Injury, 10.1385/mn:27:3:277
  182. Glass David J., Yancopoulos George D., The neurotrophins and their receptors, 10.1016/0962-8924(93)90054-5
  183. Harvey Alan R., Lovett Sarah J., Majda Bernadette T., Yoon Jun H., Wheeler Lachlan P.G., Hodgetts Stuart I., Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?, 10.1016/j.brainres.2014.10.049
  184. Pellitteri Rosalia, Russo Antonella, Stanzani Stefania, Schwann cell: A source of neurotrophic activity on cortical glutamatergic neurons in culture, 10.1016/j.brainres.2005.11.049
  185. Frostick Simon P., Yin Qi, Kemp Graham J., Schwann cells, neurotrophic factors, and peripheral nerve regeneration, 10.1002/(sici)1098-2752(1998)18:7<397::aid-micr2>3.0.co;2-f
  186. Bianco John I., Perry Chris, Harkin Damien G., Mackay-Sim Alan, Féron François, Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose : Neurotrophin 3, 10.1002/glia.10298
  187. Lipson Adam C., Widenfalk Johan, Lindqvist Eva, Ebendal Ted, Olson Lars, Neurotrophic properties of olfactory ensheathing glia, 10.1016/s0014-4886(02)00058-4
  188. Woodhall Emma, West Adrian K., Chuah Meng Inn, Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors, 10.1016/s0169-328x(01)00044-4
  189. Takuma Kazuhiro, Baba Akemichi, Matsuda Toshio, Astrocyte apoptosis: implications for neuroprotection, 10.1016/j.pneurobio.2004.02.001
  190. Nosrat Christopher A., Fried Kaj, Ebendal Ted, Olson Lars, NGF, BDNF, NT3, NT4 and GDNF in tooth development, 10.1111/j.1600-0722.1998.tb02158.x
  191. Luukko Keijo, Neuronal cells and neurotrophins in odontogenesis, 10.1111/j.1600-0722.1998.tb02157.x
  192. Nosrat Irina V., Widenfalk Johan, Olson Lars, Nosrat Christopher A., Dental Pulp Cells Produce Neurotrophic Factors, Interact with Trigeminal Neurons in Vitro, and Rescue Motoneurons after Spinal Cord Injury, 10.1006/dbio.2001.0400
  193. Baloh Robert H, Enomoto Hideki, Johnson Eugene M, Milbrandt Jeffrey, The GDNF family ligands and receptors — implications for neural development, 10.1016/s0959-4388(99)00048-3
  194. Nosrat Irina, Seiger Åke, Olson Lars, Nosrat Christopher, Expression patterns of neurotrophic factor mRNAs in developing human teeth, 10.1007/s00441-002-0618-8
  195. de Almeida Jose Flavio A., Chen Paul, Henry Michael A., Diogenes Anibal, Stem Cells of the Apical Papilla Regulate Trigeminal Neurite Outgrowth and Targeting through a BDNF-Dependent Mechanism, 10.1089/ten.tea.2013.0347
  196. Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A (2014) Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 6(1):21–26
  197. Linker Ralf, Gold Ralf, Luhder Fred, Function of Neurotrophic Factors Beyond the Nervous System: Inflammation and Autoimmune Demyelination, 10.1615/critrevimmunol.v29.i1.20
  198. Held Katherine S., Lane Thomas E., Spinal cord injury, immunodepression, and antigenic challenge, 10.1016/j.smim.2014.03.003
  199. Tysseling Vicki M, Mithal Divakar, Sahni Vibhu, Birch Derin, Jung Hosung, Miller Richard J, Kessler John A, SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury, 10.1186/1742-2094-8-16
  200. He W., Qu T., Yu Q., Wang Z., Lv H., Zhang J., Zhao X., Wang P., LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells, 10.1111/j.1365-2591.2012.02096.x
  201. Heiman Adee, Pallottie Alexandra, Heary Robert F., Elkabes Stella, Toll-like receptors in central nervous system injury and disease: A focus on the spinal cord, 10.1016/j.bbi.2014.06.203
  202. Guth Lloyd, Zhang Ziyin, DiProspero Nicholas A., Joubin Katherine, Fitch Michael T., Spinal Cord Injury in the Rat: Treatment with Bacterial Lipopolysaccharide and Indomethacin Enhances Cellular Repair and Locomotor Function, 10.1006/exnr.1994.1043
  203. Vallières Nicolas, Berard Jennifer L., David Samuel, Lacroix Steve, Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord, 10.1002/glia.20266
  204. Tomic Sergej, Djokic Jelena, Vasilijic Sasa, Vucevic Dragana, Todorovic Vera, Supic Gordana, Colic Miodrag, Immunomodulatory Properties of Mesenchymal Stem Cells Derived from Dental Pulp and Dental Follicle are Susceptible to Activation by Toll-Like Receptor Agonists, 10.1089/scd.2010.0145
  205. McGeachy Mandy J, Bak-Jensen Kristian S, Chen Yi, Tato Cristina M, Blumenschein Wendy, McClanahan Terrill, Cua Daniel J, TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology, 10.1038/ni1539
  206. Yi J., Wang D., Niu X., Hu J., Zhou Y., Li Z., MicroRNA-155 Deficiency Suppresses Th17 Cell Differentiation and Improves Locomotor Recovery after Spinal Cord Injury, 10.1111/sji.12276
  207. Pierdomenico Laura, Bonsi Laura, Calvitti Mario, Rondelli Damiano, Arpinati Mario, Chirumbolo Gabriella, Becchetti Ennio, Marchionni Cosetta, Alviano Francesco, Fossati Valentina, Staffolani Nicola, Franchina Michele, Grossi Alberto, Bagnara Gian Paolo, Multipotent Mesenchymal Stem Cells with Immunosuppressive Activity Can Be Easily Isolated from Dental Pulp : , 10.1097/01.tp.0000173794.72151.88
  208. Wada Naohisa, Menicanin Danijela, Shi Songtao, Bartold P. Mark, Gronthos Stan, Immunomodulatory properties of human periodontal ligament stem cells, 10.1002/jcp.21710
  209. Yamaza Takayoshi, Kentaro Akiyama, Chen Chider, Liu Yi, Shi Yufang, Gronthos Stan, Wang Songlin, Shi Songtao, Immunomodulatory properties of stem cells from human exfoliated deciduous teeth, 10.1186/scrt5
  210. Mita Tsuneyuki, Furukawa-Hibi Yoko, Takeuchi Hideyuki, Hattori Hisashi, Yamada Kiyofumi, Hibi Hideharu, Ueda Minoru, Yamamoto Akihito, Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease, 10.1016/j.bbr.2015.07.043
  211. Soleymaninejadian Ehsan, Pramanik Krishna, Samadian Esmaeil, Immunomodulatory Properties of Mesenchymal Stem Cells: Cytokines and Factors : IMMUNOSUPPRESSION BY MSCS, 10.1111/j.1600-0897.2011.01069.x
  212. Wada Naohisa, Gronthos Stan, Bartold P. Mark, Immunomodulatory effects of stem cells, 10.1111/prd.12024
  213. Liu Dayong, Xu Junji, Liu Ousheng, Fan Zhipeng, Liu Yi, Wang Fu, Ding Gang, Wei Fulan, Zhang Chunmei, Wang Songlin, Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation, 10.1111/jcpe.12009
  214. Yazid Farinawati Binti, Gnanasegaran Nareshwaran, Kunasekaran Wijenthiran, Govindasamy Vijayendran, Musa Sabri, Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth, 10.1007/s00784-014-1207-4
  215. Kim JC, Park J-C, Kim S-H, Im G-I, Kim B-S, Lee J-B, Choi E-Y, Song J-S, Cho K-S, Kim C-S, Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth, 10.1111/odi.12089
  216. Hall Edward D., Springer Joe E., Neuroprotection and acute spinal cord injury: A reappraisal, 10.1602/neurorx.1.1.80
  217. Beattie Michael S., Inflammation and apoptosis: linked therapeutic targets in spinal cord injury, 10.1016/j.molmed.2004.10.006
  218. Nosrat Irina V., Smith Christopher A., Mullally Patrick, Olson Lars, Nosrat Christopher A., Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system, 10.1111/j.0953-816x.2004.03314.x
  219. Apel C., Forlenza O. V., de Paula V. J. R., Talib L. L., Denecke B., Eduardo C. P., Gattaz W. F., The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease, 10.1007/s00702-008-0135-3
  220. Nesti Claudia, Pardini Carla, Barachini Serena, D'Alessandro Delfo, Siciliano Gabriele, Murri Luigi, Petrini Mario, Vaglini Francesca, Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone, 10.1016/j.brainres.2010.09.042
  221. Gnecchi Massimiliano, He Huamei, Liang Olin D, Melo Luis G, Morello Fulvio, Mu Hui, Noiseux Nicolas, Zhang Lunan, Pratt Richard E, Ingwall Joanne S, Dzau Victor J, Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, 10.1038/nm0405-367
  222. Song Miyeoun, Jue Seong-Suk, Cho Young-Ah, Kim Eun-Cheol, Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro : hDPSCs Rescue Ischemic Damaged hAs, 10.1002/jnr.23569
  223. Yamagata M., Yamamoto A., Kako E., Kaneko N., Matsubara K., Sakai K., Sawamoto K., Ueda M., Human Dental Pulp-Derived Stem Cells Protect Against Hypoxic-Ischemic Brain Injury in Neonatal Mice, 10.1161/strokeaha.112.676759
  224. Alizadeh Arsalan, Dyck Scott M., Karimi-Abdolrezaee Soheila, Myelin damage and repair in pathologic CNS: challenges and prospects, 10.3389/fnmol.2015.00035
  225. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig 122(1):80–90
  226. Yamamoto Akihito, Sakai Kiyoshi, Matsubara Kohki, Kano Fumiya, Ueda Minoru, Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury, 10.1016/j.neures.2013.10.010
  227. Sandner Beatrice, Prang Peter, Rivera Francisco J., Aigner Ludwig, Blesch Armin, Weidner Norbert, Neural stem cells for spinal cord repair, 10.1007/s00441-012-1363-2
  228. Lang J., Maeda Y., Bannerman P., Xu J., Horiuchi M., Pleasure D., Guo F., Adenomatous Polyposis Coli Regulates Oligodendroglial Development, 10.1523/jneurosci.3467-12.2013
  229. Matsubara K., Matsushita Y., Sakai K., Kano F., Kondo M., Noda M., Hashimoto N., Imagama S., Ishiguro N., Suzumura A., Ueda M., Furukawa K., Yamamoto A., Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Promote Recovery after Rat Spinal Cord Injury by Altering Macrophage Polarity, 10.1523/jneurosci.4088-14.2015
  230. Houenou Lucien J., Oppenheim Ronald W., Li Linxi, Lo Albert C., Prevette David, Regulation of spinal motoneuron survival by GDNF during development and following injury, 10.1007/s004410050690
  231. Ramer Matt S., Priestley John V., McMahon Stephen B., Functional regeneration of sensory axons into the adult spinal cord, 10.1038/35002084
  232. De Berdt P., Vanacker J., Ucakar B., Elens L., Diogenes A., Leprince J.G., Deumens R., des Rieux A., Dental Apical Papilla as Therapy for Spinal Cord Injury, 10.1177/0022034515604612
  233. Tummers M., Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species, 10.1242/dev.00332
  234. Ma Dandan, Ma Zhaofeng, Zhang Xiaojun, Wang Weihong, Yang Zhenhua, Zhang Mi, Wu Gang, Lu Wei, Deng Zhihong, Jin Yan, Effect of Age and Extrinsic Microenvironment on the Proliferation and Osteogenic Differentiation of Rat Dental Pulp Stem Cells In Vitro, 10.1016/j.joen.2009.07.016
  235. Zhang Jing, An Ying, Gao Li-Na, Zhang Yong-Jie, Jin Yan, Chen Fa-Ming, The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells, 10.1016/j.biomaterials.2012.06.032
  236. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S (2010) Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol 223(2):415–422
  237. Ma Lan, Makino Yusuke, Yamaza Haruyoshi, Akiyama Kentaro, Hoshino Yoshihiro, Song Guangtai, Kukita Toshio, Nonaka Kazuaki, Shi Songtao, Yamaza Takayoshi, Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine, 10.1371/journal.pone.0051777
  238. Seo B.-M., Miura M., Sonoyama W., Coppe C., Stanyon R., Shi S., Recovery of Stem Cells from Cryopreserved Periodontal Ligament, 10.1177/154405910508401007
  239. Lee Sheng-Yang, Chiang Pao-Chang, Tsai Yu-Hui, Tsai Shih-Ying, Jeng Jiiang-Huei, Kawata Toshitsugu, Huang Haw-Ming, Effects of Cryopreservation of Intact Teeth on the Isolated Dental Pulp Stem Cells, 10.1016/j.joen.2010.04.015
  240. Lindemann Daniele, Werle Stefanie B., Steffens Daniela, Garcia-Godoy Franklin, Pranke Patricia, Casagrande Luciano, Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth, 10.1016/j.archoralbio.2014.04.008
  241. Chen Yuk-Kwan, Huang Anderson Hsien-Cheng, Chan Anthony Wing-Sang, Shieh Tien-Yu, Lin Li-Min, Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth : Cryopreserved hDPSC from diseased vital teeth, 10.1111/j.1600-0714.2011.01040.x
  242. Perry Brandon C., Zhou Dan, Wu Xiaohua, Yang Feng-Chun, Byers Michael A., Chu T.-M. Gabriel, Hockema J. Jeffrey, Woods Erik J., Goebel W. Scott, Collection, Cryopreservation, and Characterization of Human Dental Pulp–Derived Mesenchymal Stem Cells for Banking and Clinical Use, 10.1089/ten.tec.2008.0031
  243. Briquet Alexandra, Halleux Amélie, Lechanteur Chantal, Beguin Yves, Neuropeptides to replace serum in cryopreservation of mesenchymal stromal cells?, 10.1016/j.jcyt.2013.06.012
  244. Luetzkendorf Jana, Nerger Katrin, Hering Julian, Moegel Angelika, Hoffmann Katrin, Hoefers Christiane, Mueller-Tidow Carsten, Mueller Lutz P., Cryopreservation does not alter main characteristics of Good Manufacturing Process–grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation, 10.1016/j.jcyt.2014.10.018
  245. Lizier Nelson F., Kerkis Alexandre, Gomes Cícera M., Hebling Josimeri, Oliveira Camila F., Caplan Arnold I., Kerkis Irina, Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches, 10.1371/journal.pone.0039885
  246. Broxmeyer H. E., Srour E. F., Hangoc G., Cooper S., Anderson S. A., Bodine D. M., High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years, 10.1073/pnas.0237086100
  247. Winter Jacob M., Jacobson Pam, Bullough Brandon, Christensen Austin P., Boyer Michael, Reems Jo-Anna, Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products, 10.1016/j.jcyt.2014.02.005
  248. Gioventù Silvia, Andriolo Gabriella, Bonino Ferruccio, Frasca Stefania, Lazzari Lorenza, Montelatici Elisa, Santoro Franco, Rebulla Paolo, A novel method for banking dental pulp stem cells, 10.1016/j.transci.2012.06.005
  249. Lin Shu-Li, Chang Wei-Jen, Lin Chun-Yen, Hsieh Sung-Chih, Lee Sheng-Yang, Fan Kang-Hsin, Lin Che-Tong, Huang Haw-Ming, Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation, 10.3109/15368378.2014.919588
  250. Kumar Ajay, Bhattacharyya Shalmoli, Rattan Vidya, Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells, 10.1007/s10561-015-9498-5
  251. Yong Kar Wey, Wan Safwani Wan Kamarul Zaman, Xu Feng, Wan Abas Wan Abu Bakar, Choi Jane Ru, Pingguan-Murphy Belinda, Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges, 10.1089/bio.2014.0104
  252. Watanabe Shuji, Uchida Kenzo, Nakajima Hideaki, Matsuo Hideaki, Sugita Daisuke, Yoshida Ai, Honjoh Kazuya, Johnson William E.B., Baba Hisatoshi, Early Transplantation of Mesenchymal Stem Cells After Spinal Cord Injury Relieves Pain Hypersensitivity Through Suppression of Pain-Related Signaling Cascades and Reduced Inflammatory Cell Recruitment : Transplanted MSC Reduce Hypersensitivity After SCI, 10.1002/stem.2006
  253. Lee Hye Yeong, Lee Hye-Lan, Yun Yeomin, Kim Jin-Su, Ha Yoon, Yoon Do Heum, Lee Soo-Hong, Shin Dong Ah, Human Adipose Stem Cells Improve Mechanical Allodynia and Enhance Functional Recovery in a Rat Model of Neuropathic Pain, 10.1089/ten.tea.2014.0713
  254. Roh Dae-Hyun, Seo Min-Soo, Choi Hoon-Seong, Park Sang-Bum, Han Ho-Jae, Beitz Alvin J., Kang Kyung-Sun, Lee Jang-Hern, Transplantation of Human Umbilical Cord Blood or Amniotic Epithelial Stem Cells Alleviates Mechanical Allodynia after Spinal Cord Injury in Rats, 10.3727/096368912x659907
  255. Hofstetter Christoph P, Holmström Niklas A V, Lilja Johan A, Schweinhardt Petra, Hao Jinxia, Spenger Christian, Wiesenfeld-Hallin Zsuzsanna, Kurpad Shekar N, Frisén Jonas, Olson Lars, Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome, 10.1038/nn1405
  256. MACIAS M, SYRING M, PIZZI M, CROWE M, ALEXANIAN A, KURPAD S, Pain with no gain: Allodynia following neural stem cell transplantation in spinal cord injury, 10.1016/j.expneurol.2006.04.035
  257. Davies Jeannette E, Pröschel Christoph, Zhang Ningzhe, Noble Mark, Mayer-Pröschel Margot, Davies Stephen JA, Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury, 10.1186/jbiol85
  258. Christensen Marc D., Hulsebosch Claire E., Spinal Cord Injury and Anti-NGF Treatment Results in Changes in CGRP Density and Distribution in the Dorsal Horn in the Rat, 10.1006/exnr.1997.6608
  259. Romero M, Rangappa N, Li L, Lightfoot E, Garry M, Smith G (2000) Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci 20(12):4435–4445
  260. Tang X.-Q., Heron P., Mashburn C., Smith G. M., Targeting Sensory Axon Regeneration in Adult Spinal Cord, 10.1523/jneurosci.1442-07.2007
  261. Krenz Natalie R., Weaver Lynne C., Nerve Growth Factor in Glia and Inflammatory Cells of the Injured Rat Spinal Cord, 10.1046/j.1471-4159.2000.740730.x
  262. Brown Arthur, Ricci Mary-Jo, Weaver Lynne C., NGF message and protein distribution in the injured rat spinal cord, 10.1016/j.expneurol.2004.03.017
  263. Deumens Ronald, Joosten Elbert A. J., Waxman Stephen G., Hains Bryan C., Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord Injury, 10.1007/s12035-008-8016-1
  264. Yao Z, Sun X, Li P, Liu H, Wu H, Xi Z, Zheng Z (2015) Neural stem cells transplantation alleviate the hyperalgesia of spinal cord injured (SCI) associated with down-regulation of BDNF. Int J Clin Exp Med 8(1):404–412
  265. Luo Yun, Zou Yu, Yang Linhui, Liu Jia, Liu Sujuan, Liu Jin, Zhou Xinfu, Zhang Wensheng, Wang Tinghua, Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury, 10.1016/j.neulet.2013.06.005
  266. Coull Jeffrey A. M., Beggs Simon, Boudreau Dominic, Boivin Dominick, Tsuda Makoto, Inoue Kazuhide, Gravel Claude, Salter Michael W., De Koninck Yves, BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain, 10.1038/nature04223
  267. Boulenguez Pascale, Liabeuf Sylvie, Bos Rémi, Bras Hélène, Jean-Xavier Céline, Brocard Cécile, Stil Aurélie, Darbon Pascal, Cattaert Daniel, Delpire Eric, Marsala Martin, Vinay Laurent, Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury, 10.1038/nm.2107
  268. Hasbargen Tera, Ahmed Mostafa M., Miranpuri Gurwattan, Li Lin, Kahle Kristopher T., Resnick Daniel, Sun Dandan, Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury : Neuropathic pain, 10.1111/j.1749-6632.2010.05462.x
  269. Berger Julie V., Knaepen Liesbeth, Janssen Sofie P.M., Jaken Robby J.P., Marcus Marco A.E., Joosten Elbert A.J., Deumens Ronald, Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches, 10.1016/j.brainresrev.2011.03.003
  270. Rycaj K., Tang D. G., Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations, 10.1158/0008-5472.can-15-0798
  271. Miura Masako, Miura Yasuo, Padilla-Nash Hesed M., Molinolo Alfredo A., Fu Baojin, Patel Vyomesh, Seo Byoung-Moo, Sonoyama Wataru, Zheng Jenny J., Baker Carl C., Chen Wanjun, Ried Thomas, Shi Songtao, Accumulated Chromosomal Instability in Murine Bone Marrow Mesenchymal Stem Cells Leads to Malignant Transformation, 10.1634/stemcells.2005-0403
  272. Pan Qiuwei, Fouraschen Suomi MG, de Ruiter Petra E, Dinjens Winand NM, Kwekkeboom Jaap, Tilanus Hugo W, van der Laan Luc JW, Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells, 10.1177/1535370213506802
  273. Nguyen Hao G., Ravid Katya, Tetraploidy/aneuploidy and stem cells in cancer promotion: The role of chromosome passenger proteins, 10.1002/jcp.20565
  274. Roemeling-van Rhijn Marieke, de Klein Annelies, Douben Hannie, Pan Qiuwei, van der Laan Luc J.W., Ijzermans Jan N.M., Betjes Michiel G.H., Baan Carla C., Weimar Willem, Hoogduijn Martin J., Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells, 10.1016/j.jcyt.2013.07.004
  275. Duailibi Monica Talarico, Kulikowski Leslie Domenici, Duailibi Silvio Eduardo, Lipay Monica Vannucci Nunes, Melaragno Maria Isabel, Ferreira Lydia Masako, Vacanti Joseph Phillip, Yelick Pamela Crotty, Cytogenetic instability of dental pulp stem cell lines, 10.1007/s10735-011-9373-z
  276. Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L (2007) Human dental pulp stem cells-isolation and long term cultivation. Acta Medica (Hradec Králové) 50(3):195–201
  277. Suchánek Jakub, Víšek Benjamín, Soukup Tomáš, El-Din Mohamed Sally Kamal, Ivančaková Romana, Mokrý Jaroslav, Aboul-Ezz Eman H. A., Omran A., Stem Cells from Human Exfoliated Deciduous Teeth – Isolation, Long Term Cultivation and Phenotypical Analysis, 10.14712/18059694.2016.66
  278. Crowder S. W., Horton L. W., Lee S. H., McClain C. M., Hawkins O. E., Palmer A. M., Bae H., Richmond A., Sung H.-J., Passage-dependent cancerous transformation of human mesenchymal stem cells under carcinogenic hypoxia, 10.1096/fj.13-228288
  279. Barkholt Lisbeth, Flory Egbert, Jekerle Veronika, Lucas-Samuel Sophie, Ahnert Peter, Bisset Louise, Büscher Dirk, Fibbe Willem, Foussat Arnaud, Kwa Marcel, Lantz Olivier, Mačiulaitis Romaldas, Palomäki Tiina, Schneider Christian K., Sensebé Luc, Tachdjian Gérard, Tarte Karin, Tosca Lucie, Salmikangas Paula, Risk of tumorigenicity in mesenchymal stromal cell–based therapies—Bridging scientific observations and regulatory viewpoints, 10.1016/j.jcyt.2013.03.005
  280. Yoon H, Min J, Shin N, Kim Y, Kim J, Hwang Y, Suh J, Hwang O, Jeon S (2013) Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson’s disease? Neural Regen Res 8(13):1190–1200
  281. Grimm Wolf-Dieter, Arnold Wolfgang H., Becher Sebastian, Dannan Aous, Gassmann Georg, Philippou Stathis, Dittmar Thomas, Varga Gabor, Does the Chronically Inflamed Periodontium Harbour Cancer Stem Cells?, Stem Cell Biology in Health and Disease (2009) ISBN:9789048130399 p.251-279, 10.1007/978-90-481-3040-5_12
  282. Weinberg Mea A., Bral Michael, Laboratory animal models in periodontology, 10.1034/j.1600-051x.1999.260601.x
  283. Li Y, Li D, Raisman G (2015) Functional repair of rat corticospinal tract lesions does not require permanent survival of an immuno-incompatible transplant. Cell Transplant (Epub ahead of print)
  284. Harrington Jodie, Sloan Alastair J., Waddington Rachel J., Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow, 10.3109/03008207.2014.923859
  285. Pisciotta Alessandra, Carnevale Gianluca, Meloni Simona, Riccio Massimo, De Biasi Sara, Gibellini Lara, Ferrari Adriano, Bruzzesi Giacomo, De Pol Anto, Human Dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations, 10.1186/s12861-015-0065-x
  286. Hsu Shan-hui, Huang Guo-Shiang, Feng Fuh, Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes, 10.1016/j.biomaterials.2011.12.032
  287. Karamzadeh R, Eslaminejad M, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69:e4372
  288. Huang Anderson Hsien-Cheng, Chen Yuk-Kwan, Chan Anthony Wing-Sang, Shieh Tien-Yu, Lin Li-Min, Isolation and Characterization of Human Dental Pulp Stem/Stromal Cells From Nonextracted Crown-fractured Teeth Requiring Root Canal Therapy, 10.1016/j.joen.2009.01.019