User menu

Optimal pits and optimal transportation

Bibliographic reference Ekeland, Ivar ; Queyranne, Maurice. Optimal pits and optimal transportation. In: Modelisation Mathematique et Analyse Numerique, Vol. 49, no.6, p. 1659-1670 (2015)
Permanent URL http://hdl.handle.net/2078.1/172498
  1. Alvarez F., Jorge A. Andreas G. and Nikolai S., A continuous framework for open pit mine planning.Math. Methods Oper. Res.73(2011) 29–54
  2. D. Bienstock and Z. Mark, Solving LP Relaxations of Large-Scale Precedence constrained problems.Proc. of 14th Conference on Integer Programming and Combinatorial Optimization (IPCO 2010). Vol. 6080 ofLect. Note Comput. Sci.Springer (2010) 1–14.
  3. G. Carlier, Duality and Existence for a Class of Mass Transportation Problems and Economic Applications, inAdv. Math. Econ.Springer, Japan (2003) 1–21
  4. Ekeland I., Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types.Econ. Theory42(2010) 275–315
  5. Espinoza D., Goycoolea M., Moreno E. and Newman A.N., MineLib: A library of open pit mining problems.Ann. Oper. Res.206(2012) 91–114
  6. Griewank A. and Nikolai S., Duality results for stationary problems of open pit mine planning in a continuous function framework.Comput. Appl. Math.30(2011) 197–215.
  7. J. Guzmán, Ultimate Pit Limit Determination: A New Formulation for an Old (and Poorly Specified) ProblemWorkshop on Operations Research in Mining, Viña del Mar, Chile(2008) 10–12.
  8. P. Huttagosol and R.E. Cameron, A Computer Design of Ultimate Pit Limit by Using Transportation Algorithm, inProc. of the 23rd International Symposium on Applications of Computers in Mining(1992) 443–460.
  9. Th. B. Johnson,Optimum open pit mine production scheduling. Report ORC-68-11, Operations Research Center. University of California Berkeley (1968).
  10. R. Khalokakaie,Computer-aided optimal open pit design with variable slope angles.Ph.D. thesis, University of Leeds (1999).
  11. Khalokakaie R., Dowd P.A. and Fowell R.J., Lerchs-Grossmann algorithm with variable slope angles.Mining Technology109(2000) 77–85.
  12. G. Matheron,Paramétrage de contours optimaux. Note géostatistique 128. Fontainebleau. Février (1975).
  13. G. Matheron,Compléments sur le paramétrage de contours optimaux. Note géostatistique 129. Fontainebleau, Février (1975).
  14. N. Morales,Modelos Matemáticos Para Planificación Minera. Engineering thesis. Universidad de Chile, Santiago (2002).
  15. Newman A.M., Rubio E., Caro R., Weintraub A. and Eurek K., A review of operations research in mine planning.Interfaces40(2010) 222–245.
  16. Picard J.-C., Maximal closure of a graph and applications to combinatorial problems.Manag. Sci.22(1976) 1268–1272
  17. Strogies , Nikolai , and Griewank Andreas, A PDE constraint formulation of Open Pit Mine Planning Problems.Proc. Appl. Math. Mech.13(2013) 391–392
  18. Topkis D.M., Minimizing a submodular function on a lattice.Oper. Res.26(1978) 305–321.
  19. Villani Cédric, Topics in Optimal Transportation, ISBN:9780821833124, 10.1090/gsm/058