User menu

Biomarkers to predict opioid analgesia, a most difficult conundrum : Commentary on a paper by Gram et a

Bibliographic reference Plaghki, Léon. Biomarkers to predict opioid analgesia, a most difficult conundrum : Commentary on a paper by Gram et a. In: European Journal of Pain, Vol. 19, no. 10, p. 1387-1388 (2015)
Permanent URL http://hdl.handle.net/2078.1/172004
  1. Gram M., Graversen C., Olesen A.E., Drewes A.M., Machine learning on encephalographic activity may predict opioid analgesia, 10.1002/ejp.734
  2. Grosen K., Fischer I.W.D., Olesen A.E., Drewes A.M., Can quantitative sensory testing predict responses to analgesic treatment? : Prediction using sensory testing, 10.1002/j.1532-2149.2013.00330.x
  3. Statnikov Alexander, Aliferis Constantin F, Hardin Douglas P, Guyon Isabelle, A Gentle Introduction to Support Vector Machines in Biomedicine : Volume 1: Theory and Methods, ISBN:9789814324380, 10.1142/7922