User menu

Role of AMP-activated protein kinase in metabolic depression in animals

Bibliographic reference Rider, Mark. Role of AMP-activated protein kinase in metabolic depression in animals. In: Journal of Comparative Physiology B, Vol. 186, no.1, p. 1-16 (2016)
Permanent URL http://hdl.handle.net/2078.1/171917
  1. Ahmadian Maryam, Abbott Marcia J., Tang Tianyi, Hudak Carolyn S.S., Kim Yangha, Bruss Matthew, Hellerstein Marc K., Lee Hui-Young, Samuel Varman T., Shulman Gerald I., Wang Yuhui, Duncan Robin E., Kang Chulho, Sul Hei Sook, Desnutrin/ATGL Is Regulated by AMPK and Is Required for a Brown Adipose Phenotype, 10.1016/j.cmet.2011.05.002
  2. Andersen Martin N., Rasmussen Hanne B., AMPK : A regulator of ion channels, 10.4161/cib.21200
  3. Apfeld J., The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans, 10.1101/gad.1255404
  4. Arrese Estela L., Patel Rajesh T., Soulages Jose L., The main triglyceride-lipase from the insect fat body is an active phospholipase A1: identification and characterization, 10.1194/jlr.m600161-jlr200
  5. Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242:3239–3241
  6. Bain Jenny, Plater Lorna, Elliott Matt, Shpiro Natalia, Hastie C. James, Mclauchlan Hilary, Klevernic Iva, Arthur J. Simon C., Alessi Dario R., Cohen Philip, The selectivity of protein kinase inhibitors: a further update, 10.1042/bj20070797
  7. Barber Michael C., Price Nigel T., Travers Maureen T., Structure and regulation of acetyl-CoA carboxylase genes of metazoa, 10.1016/j.bbalip.2004.12.001
  8. Bartrons Mireia, Ortega Enric, Obach Mercè, Calvo María Nieves, Navarro-Sabaté Àurea, Bartrons Ramon, Activation of AMP-dependent protein kinase by hypoxia and hypothermia in the liver of frog Rana perezi, 10.1016/j.cryobiol.2004.06.004
  9. Bauwens J. D., Schmuck E. G., Lindholm C. R., Ertel R. L., Mulligan J. D., Hovis I., Viollet B., Saupe K. W., Cold tolerance, cold-induced hyperphagia, and nonshivering thermogenesis are normal in  1-AMPK-/- mice, 10.1152/ajpregu.00444.2010
  10. Bishop Tammie, St-Pierre Julie, Brand Martin D., Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells, 10.1152/ajpregu.00401.2001
  11. Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204:3171–3181
  12. Brown Jason C. L., Staples James F., Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels, 10.1007/s00360-013-0799-3
  13. Brown J. C. L., Chung D. J., Cooper A. N., Staples J. F., Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels, 10.1242/jeb.078519
  14. Bruss M. D., Arias E. B., Lienhard G. E., Cartee G. D., Increased Phosphorylation of Akt Substrate of 160 kDa (AS160) in Rat Skeletal Muscle in Response to Insulin or Contractile Activity, 10.2337/diabetes.54.1.41
  15. Buck LT, Land SC, Hochachka PW (1993) Anoxia-tolerant hepatocytes: model system for study of reversible metabolic suppression. Am J Physiol 265:R49–R56
  16. Burgess Shawn C., Iizuka Katsumi, Jeoung Nam Ho, Harris Robert A., Kashiwaya Yoshihiro, Veech Richard L., Kitazume Tatsuya, Uyeda Kosaku, Carbohydrate-response Element-binding Protein Deletion Alters Substrate Utilization Producing an Energy-deficient Liver, 10.1074/jbc.m706540200
  17. Buttgereit F, Brand M D, A hierarchy of ATP-consuming processes in mammalian cells, 10.1042/bj3120163
  18. Chung D. J., Szyszka B., Brown J. C. L., Huner N. P. A., Staples J. F., Changes in the mitochondrial phosphoproteome during mammalian hibernation, 10.1152/physiolgenomics.00171.2012
  19. Churchill Thomas A., Storey Kenneth B., Intermediary Energy Metabolism during Dormancy and Anoxia in the Land Snail Otala lactea, 10.1086/physzool.62.5.30156193
  20. Churchill T. A., Storey K. B., Effects of dehydration on organ metabolism in the frogPseudacris crucifer: hyperglycemic responses to dehydration mimic freezing-induced cryoprotectant production, 10.1007/bf00714587
  21. Churchill Thomas A., Busza Albert L., Fuller Barry J., Energy Metabolism in Liver of Anoxia-Tolerant Turtle Species (Pseudemys scripta): A Model for Studying Hepatic Tolerance to Cold Hypoxia, 10.1006/cryo.1997.2019
  22. Conrad Michaela, Schothorst Joep, Kankipati Harish Nag, Van Zeebroeck Griet, Rubio-Texeira Marta, Thevelein Johan M., Nutrient sensing and signaling in the yeastSaccharomyces cerevisiae, 10.1111/1574-6976.12065
  23. Daval Marie, Diot-Dupuy Francine, Bazin Raymond, Hainault Isabelle, Viollet Benoît, Vaulont Sophie, Hajduch Eric, Ferré Pascal, Foufelle Fabienne, Anti-lipolytic Action of AMP-activated Protein Kinase in Rodent Adipocytes, 10.1074/jbc.m414222200
  24. Donohoe PH, West TG, Boutilier RG (1998) Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs. Am J Physiol 274:R704–R710
  25. English Tamara E., Storey Kenneth B., Enzymes of Adenylate Metabolism and Their Role in Hibernation of the White-Tailed Prairie Dog, Cynomys leucurus, 10.1006/abbi.1999.1686
  26. Florant Gregory L., Healy Jessica E., The regulation of food intake in mammalian hibernators: a review, 10.1007/s00360-011-0630-y
  27. Frerichs K. U., Smith C. B., Brenner M., DeGracia D. J., Krause G. S., Marrone L., Dever T. E., Hallenbeck J. M., Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation, 10.1073/pnas.95.24.14511
  28. Freschi Luca, Osseni Mazid, Landry Christian R., Functional Divergence and Evolutionary Turnover in Mammalian Phosphoproteomes, 10.1371/journal.pgen.1004062
  29. Fulco Marcella, Sartorelli Vittorio, Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues, 10.4161/cc.7.23.7164
  30. Galli G. L. J., Lau G. Y., Richards J. G., Beating oxygen: chronic anoxia exposure reduces mitochondrial F1FO-ATPase activity in turtle (Trachemys scripta) heart, 10.1242/jeb.087155
  31. Gauthier Marie-Soleil, Miyoshi Hideaki, Souza Sandra C., Cacicedo José M., Saha Asish K., Greenberg Andrew S., Ruderman Neil B., AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte : POTENTIAL MECHANISM AND PHYSIOLOGICAL RELEVANCE, 10.1074/jbc.m708177200
  32. Gowans Graeme J., Hawley Simon A., Ross Fiona A., Hardie D. Grahame, AMP Is a True Physiological Regulator of AMP-Activated Protein Kinase by Both Allosteric Activation and Enhancing Net Phosphorylation, 10.1016/j.cmet.2013.08.019
  33. Grabek Katharine R., Martin Sandra L., Hindle Allyson G., Proteomics approaches shed new light on hibernation physiology, 10.1007/s00360-015-0905-9
  34. Guppy Michael, The biochemistry of metabolic depression: a history of perceptions, 10.1016/j.cbpc.2004.02.019
  35. GUPPY MICHAEL, WITHERS PHILIP, Metabolic depression in animals: physiological perspectives and biochemical generalizations, 10.1017/s0006323198005258
  36. Guppy M, Reeves DC, Bishop T, Withers P, Buckingham JA, Brand MD (2000) Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails. FASEB J 14:999–1004
  37. Gwinn Dana M., Shackelford David B., Egan Daniel F., Mihaylova Maria M., Mery Annabelle, Vasquez Debbie S., Turk Benjamin E., Shaw Reuben J., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, 10.1016/j.molcel.2008.03.003
  38. Hand Steven C., Menze Michael A., Borcar Apu, Patil Yuvraj, Covi Joseph A., Reynolds Julie A., Toner Mehmet, Metabolic restructuring during energy-limited states: Insights from Artemia franciscana embryos and other animals, 10.1016/j.jinsphys.2011.02.010
  39. Hardie D. Grahame, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, 10.1038/nrm2249
  40. Hardie D. G., AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function, 10.1101/gad.17420111
  41. Hardie D. Grahame, AMPK—Sensing Energy while Talking to Other Signaling Pathways, 10.1016/j.cmet.2014.09.013
  42. Healy Jessica E., Gearhart Cassandra N., Bateman Jenna L., Handa Robert J., Florant Gregory L., AMPK and ACCchange with fasting and physiological condition in euthermic and hibernating golden-mantled ground squirrels (Callospermophilus lateralis), 10.1016/j.cbpa.2011.03.026
  43. Hindle A. G., Grabek K. R., Epperson L. E., Karimpour-Fard A., Martin S. L., Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels, 10.1152/physiolgenomics.00190.2013
  44. Hochachka P. W., Buck L. T., Doll C. J., Land S. C., Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack., 10.1073/pnas.93.18.9493
  45. Horman Sandrine, Browne Gareth J., Krause Ulrike, Patel Jigna V., Vertommen Didier, Bertrand Luc, Lavoinne Alain, Hue Louis, Proud Christopher G., Rider Mark H., Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis, 10.1016/s0960-9822(02)01077-1
  46. Horman Sandrine, Beauloye Christophe, Vertommen Didier, Vanoverschelde Jean-Louis, Hue Louis, Rider Mark H., Myocardial Ischemia and Increased Heart Work Modulate the Phosphorylation State of Eukaryotic Elongation Factor-2, 10.1074/jbc.m302403200
  47. Horman Sandrine, Hussain Nusrat, Dilworth Stephen M., Storey Kenneth B., Rider Mark H., Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation, 10.1016/j.cbpb.2005.08.010
  48. Horne Irene, Haritos Victoria S., Oakeshott John G., Comparative and functional genomics of lipases in holometabolous insects, 10.1016/j.ibmb.2009.06.002
  49. Hue Louis, Rider Mark H., The AMP-activated protein kinase: more than an energy sensor, 10.1042/bse0430121
  50. Inoki Ken, Zhu Tianqing, Guan Kun-Liang, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, 10.1016/s0092-8674(03)00929-2
  51. Jibb L. A., Richards J. G., AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus, 10.1242/jeb.019117
  52. Johnson Erik C., Kazgan Nevzat, Bretz Colin A., Forsberg Lawrence J., Hector Clare E., Worthen Ryan J., Onyenwoke Rob, Brenman Jay E., Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila, 10.1371/journal.pone.0012799
  53. Kahn Barbara B., Alquier Thierry, Carling David, Hardie D. Grahame, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, 10.1016/j.cmet.2004.12.003
  54. Kelly DA, Storey KB (1988) Organ-specific control of glycolysis in anoxic turtles. Am J Physiol 255:R774–R779
  55. Kennelly Peter J., Protein Ser/Thr/Tyr Phosphorylation in the Archaea, 10.1074/jbc.r113.529412
  56. Kim Myungjin, Lee Jun, Identification of an AMPK Phosphorylation Site in Drosophila TSC2 (gigas) that Regulate Cell Growth, 10.3390/ijms16047015
  57. Knickerbocker DL, Lutz PL (2001) Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. J Exp Biol 204:3547–3551
  58. Kostal V., On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus, 10.1242/jeb.00923
  59. Kramer Henning F., Witczak Carol A., Taylor Eric B., Fujii Nobuharu, Hirshman Michael F., Goodyear Laurie J., AS160 Regulates Insulin- and Contraction-stimulated Glucose Uptake in Mouse Skeletal Muscle, 10.1074/jbc.m605461200
  60. Krebs E G, Beavo J A, Phosphorylation-Dephosphorylation of Enzymes, 10.1146/annurev.bi.48.070179.004423
  61. Krumschnabel G, Schwarzbaum PJ, Biasi C, Dorigatti M, Wieser W (1997) Effects of energy limitation on Ca2 + and K + homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. Am J Physiol 273:R307–R316
  62. Lai Yu-Chiang, Kviklyte Samanta, Vertommen Didier, Lantier Louise, Foretz Marc, Viollet Benoît, Hallén Stefan, Rider Mark H., A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, 10.1042/bj20131673
  63. Lanaspa Miguel A., Epperson L. Elaine, Li Nanxing, Cicerchi Christina, Garcia Gabriela E., Roncal-Jimenez Carlos A., Trostel Jessica, Jain Swati, Mant Colin T., Rivard Christopher J., Ishimoto Takuji, Shimada Michiko, Sanchez-Lozada Laura Gabriela, Nakagawa Takahiko, Jani Alkesh, Stenvinkel Peter, Martin Sandra L., Johnson Richard J., Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel, 10.1371/journal.pone.0123509
  64. Lass Achim, Zimmermann Robert, Oberer Monika, Zechner Rudolf, Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores, 10.1016/j.plipres.2010.10.004
  65. Lau Gigi Y., Richards Jeffrey G., AMP-activated protein kinase plays a role in initiating metabolic rate suppression in goldfish hepatocytes, 10.1007/s00360-011-0575-1
  66. Lee Yongjin, Kim Eun-Kyoung, AMP-activated protein kinase as a key molecular link between metabolism and clockwork, 10.1038/emm.2013.65
  67. Lee Jun Hee, Koh Hyongjong, Kim Myungjin, Kim Yongsung, Lee Soo Young, Karess Roger E., Lee Sang-Hee, Shong Minho, Kim Jin-Man, Kim Jaeseob, Chung Jongkyeong, Energy-dependent regulation of cell structure by AMP-activated protein kinase, 10.1038/nature05828
  68. Lutz PL, McMahon P, Rosenthal M, Sick TJ (1984) Relationships between aerobic and anaerobic energy production in turtle brain in situ. Am J Physiol 247:R740–R744
  69. MacDonald Justin A., Storey Kenneth B., Regulation of Ground Squirrel Na+K+-ATPase Activity by Reversible Phosphorylation during Hibernation, 10.1006/bbrc.1998.9960
  70. MacRae Thomas H., Gene expression, metabolic regulation and stress tolerance during diapause, 10.1007/s00018-010-0311-0
  71. Malik A. I., Storey K. B., Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis, 10.1242/jeb.030627
  72. Martinez-Atienza Juliana, Van Ingelgem Carl, Roef Luc, Maathuis Frans J.M., Plant Cyclic Nucleotide Signalling : Facts and Fiction, 10.4161/psb.2.6.4789
  73. McBride A., Hardie D. G., AMP-activated protein kinase - a sensor of glycogen as well as AMP and ATP?, 10.1111/j.1748-1716.2009.01975.x
  74. Mendelsohn Bryce A., Kassebaum Bethany L., Gitlin Jonathan D., The zebrafish embryo as a dynamic model of anoxia tolerance, 10.1002/dvdy.21581
  75. Menze M. A., Depression of cell metabolism and proliferation by membrane-permeable and -impermeable modulators: role for AMP-to-ATP ratio, 10.1152/ajpregu.00490.2004
  76. Migliorini RH, Lima-Verde JS, Machado CR, Cardona GM, Garofalo MA, Kettelhut IC (1992) Control of adipose tissue lipolysis in ectotherm vertebrates. Am J Physiol 263:R857–R862
  77. Miranda Lisa, Horman Sandrine, De Potter Isabelle, Hue Louis, Jensen Jørgen, Rider Mark H., Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle, 10.1007/s00424-007-0368-2
  78. Mulligan Jacob D., Gonzalez Asensio A., Stewart Annette M., Carey Hannah V., Saupe Kurt W., Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse : AMPK in brown and white adipose tissue, 10.1113/jphysiol.2007.128652
  79. Narbonne P., Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling, 10.1242/dev.02232
  80. Narbonne Patrick, Roy Richard, Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival, 10.1038/nature07536
  81. Oakhill J. S., Steel R., Chen Z.-P., Scott J. W., Ling N., Tam S., Kemp B. E., AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase, 10.1126/science.1200094
  82. Oakhill Jonathan S., Scott John W., Kemp Bruce. E., AMPK functions as an adenylate charge-regulated protein kinase, 10.1016/j.tem.2011.12.006
  83. Olson CS, Clegg JS (1978) Cell division during the development of Artemia salina. Dev Genes Evol 184:1–13
  84. Pagnon Joanne, Matzaris Maria, Stark Romana, Meex Ruth C. R., Macaulay S. Lance, Brown Wendy, O'Brien Paul E., Tiganis Tony, Watt Matthew J., Identification and Functional Characterization of Protein Kinase A Phosphorylation Sites in the Major Lipolytic Protein, Adipose Triglyceride Lipase, 10.1210/en.2012-1127
  85. PAN David A., HARDIE D. Grahame, A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion, 10.1042/bj20020703
  86. Papa Sergio, Rasmo Domenico De, Technikova-Dobrova Zuzana, Panelli Damiano, Signorile Anna, Scacco Salvatore, Petruzzella Vittoria, Papa Francesco, Palmisano Giuseppe, Gnoni Antonio, Micelli Loris, Sardanelli Anna Maria, Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases, 10.1016/j.febslet.2011.09.019
  87. Patil Yuvraj N., Marden Brad, Brand Martin D., Hand Steven C., Metabolic Downregulation and Inhibition of Carbohydrate Catabolism during Diapause in Embryos ofArtemia franciscana, 10.1086/667808
  88. Pedler S., Fuery C. J., Withers P. C., Flanigan J., Guppy M., Effectors of metabolic depression in an estivating pulmonate snail (Helix aspersa): whole animal and in vitro tissue studies, 10.1007/bf02336920
  89. Pinz I, Perry D, Frederich M (2005) Activation of 5′-AMP activated protein kinase during anaerobiosis in the rock crab, Cancer irroratus. MDIBL Bull 44:31–32
  90. Plaideau C., Liu J., Hartleib-Geschwindner J., Bastin-Coyette L., Bontemps F., Oscarsson J., Hue L., Rider M. H., Overexpression of AMP-metabolizing enzymes controls adenine nucleotide levels and AMPK activation in HEK293T cells, 10.1096/fj.11-198168
  91. Plaideau Catheline, Lai Yu-Chiang, Kviklyte Samanta, Zanou Nadège, Löfgren Lars, Andersén Harriet, Vertommen Didier, Gailly Philippe, Hue Louis, Bohlooly-Y Mohammad, Hallén Stefan, Rider Mark H., Effects of Pharmacological AMP Deaminase Inhibition and Ampd1 Deletion on Nucleotide Levels and AMPK Activation in Contracting Skeletal Muscle, 10.1016/j.chembiol.2014.09.013
  92. Podrabsky Jason E., Hand Steven C., Depression of Protein Synthesis during Diapause in Embryos of the Annual KillifishAustrofundulus limnaeus, 10.1086/318106
  93. Podrabsky JE, Hand SC (2015) Physiological strategies during animal diapause: lessons from brine shrimp and annual killifish. J Exp Biol 218:1879–1906
  94. Podrabsky Jason E., Menze Michael A., Hand Steven C., Long-Term Survival of Anoxia Despite Rapid ATP Decline in Embryos of the Annual KillifishAustrofundulus limnaeus : ANOXIC SURVIVAL DESPITE RAPID ATP DECLINE, 10.1002/jez.1744
  95. Proud Christopher G., Signalling to translation: how signal transduction pathways control the protein synthetic machinery, 10.1042/bj20070024
  96. Pyr Dit Ruys Sébastien, Wang Xuemin, Smith Ewan M., Herinckx Gaëtan, Hussain Nusrat, Rider Mark H., Vertommen Didier, Proud Christopher G., Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase, 10.1042/bj20111530
  97. Ramnanan Christopher J., McMullen David C., Groom Amy G., Storey Kenneth B., The regulation of AMPK signaling in a natural state of profound metabolic rate depression, 10.1007/s11010-009-0246-7
  98. Reynolds Julie A., Hand Steven C., Differences in Isolated Mitochondria Are Insufficient to Account for Respiratory Depression during Diapause inArtemia franciscanaEmbryos, 10.1086/420950
  99. RIDER Mark H., BERTRAND Luc, VERTOMMEN Didier, MICHELS Paul A., ROUSSEAU Guy G., HUE Louis, 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis, 10.1042/bj20040752
  100. Rider Mark H., Hussain Nusrat, Horman Sandrine, Dilworth Stephen M., Storey Kenneth B., Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica, 10.1016/j.cryobiol.2006.08.001
  101. Rider Mark H., Hussain Nusrat, Dilworth Stephen M., Storey Kenneth B., Phosphorylation of translation factors in response to anoxia in turtles, Trachemys scripta elegans: role of the AMP-activated protein kinase and target of rapamycin signalling pathways, 10.1007/s11010-009-0193-3
  102. Rider Mark H., Waelkens Etienne, Derua Rita, Vertommen Didier, Fulfilling the Krebs and Beavo criteria for studying protein phosphorylation in the era of mass spectrometry-driven kinome research, 10.3109/13813450903338108
  103. Rider Mark H., Hussain Nusrat, Dilworth Stephen M., Storey Janet M., Storey Kenneth B., AMP-activated protein kinase and metabolic regulation in cold-hardy insects, 10.1016/j.jinsphys.2011.07.006
  104. Scanes C.G., Peterla T.A., Campbell R.M., Influence of adenosine or adrenergic agonists on growth hormone stimulated lipolysis by chicken adipose tissue in vitro, 10.1016/1367-8280(94)90047-7
  105. Scott John W., Ling Naomi, Issa Samah M.A., Dite Toby A., O’Brien Matthew T., Chen Zhi-Ping, Galic Sandra, Langendorf Christopher G., Steinberg Gregory R., Kemp Bruce E., Oakhill Jonathan S., Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream Kinase Signaling, 10.1016/j.chembiol.2014.03.006
  106. Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01114–e01130
  107. Shirra M. K., Patton-Vogt J., Ulrich A., Liuta-Tehlivets O., Kohlwein S. D., Henry S. A., Arndt K. M., Inhibition of Acetyl Coenzyme A Carboxylase Activity Restores Expression of the INO1 Gene in a snf1 Mutant Strain of Saccharomyces cerevisiae, 10.1128/mcb.21.17.5710-5722.2001
  108. Staples James F., Buck Leslie T., Matching cellular metabolic supply and demand in energy-stressed animals, 10.1016/j.cbpa.2009.02.010
  109. Staples James F., Hochachka Peter W., Liver energy metabolism during hibernation in the golden-mantled ground squirrel, Spermophilus lateralis, 10.1139/z97-127
  110. Stenslokken K.-O., Ellefsen S., Stecyk J. A. W., Dahl M. B., Nilsson G. E., Vaage J., Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius), 10.1152/ajpregu.90590.2008
  111. Stoll B, Gerok W, Lang F, Häussinger D, Liver cell volume and protein synthesis, 10.1042/bj2870217
  112. Storey Kenneth B., Storey Janet M., Freeze tolerant frogs: cryoprotectants and tissue metabolism during freeze–thaw cycles, 10.1139/z86-008
  113. Storey K. B., Storey J. M., Tribute to P. L. Lutz: putting life on `pause' - molecular regulation of hypometabolism, 10.1242/jeb.02716
  114. Storey K. B., Storey J. M., Aestivation: signaling and hypometabolism, 10.1242/jeb.054403
  115. Swoap S. J., Rathvon M., Gutilla M., AMP does not induce torpor, 10.1152/ajpregu.00888.2006
  116. van Dam Teunis J. P., Zwartkruis Fried J. T., Bos Johannes L., Snel Berend, Evolution of the TOR Pathway, 10.1007/s00239-011-9469-9
  117. van den Thillart G, van Waarde A, Muller HJ, Erkelens C, Addinck A, Lugtenburg J (1989) Fish muscle energy metabolism measured by in vivo 31P-NMR during anoxia and recovery. Am J Physiol 256:R922–R929
  118. Viollet B., Andreelli F., Jørgensen S.B., Perrin C., Flamez D., Mu J., Wojtaszewski J.F.P., Schuit F.C., Birnbaum M., Richter E., Burcelin R., Vaulont S., Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models, 10.1042/bst0310216
  119. Wegener G., Flying insects: model systems in exercise physiology, 10.1007/bf01919307
  120. Wegener Gerhard, Bolas Nicholas M., Thomas Andr� A. G., Locust flight metabolism studied in vivo by 31P NMR spectroscopy, 10.1007/bf00262305
  121. WIESER Wolfgang, KRUMSCHNABEL Gerhard, Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects, 10.1042/bj3550389
  122. Witters Lee A., Watts Thomas D., Yeast acetyl-CoA carboxylase: In vitro phosphorylation by mammalian and yeast protein kinases, 10.1016/0006-291x(90)90341-j
  123. Xiao Bing, Heath Richard, Saiu Peter, Leiper Fiona C., Leone Philippe, Jing Chun, Walker Philip A., Haire Lesley, Eccleston John F., Davis Colin T., Martin Stephen R., Carling David, Gamblin Steven J., Structural basis for AMP binding to mammalian AMP-activated protein kinase, 10.1038/nature06161
  124. Xiao Bing, Sanders Matthew J., Underwood Elizabeth, Heath Richard, Mayer Faith V., Carmena David, Jing Chun, Walker Philip A., Eccleston John F., Haire Lesley F., Saiu Peter, Howell Steven A., Aasland Rein, Martin Stephen R., Carling David, Gamblin Steven J., Structure of mammalian AMPK and its regulation by ADP, 10.1038/nature09932
  125. Xue Bingzhong, Kahn Barbara B., AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues : AMPK regulates food intake and energy balance, 10.1113/jphysiol.2006.113217
  126. Zhang Jianfa, Kaasik Krista, Blackburn Michael R., Lee Cheng Chi, Constant darkness is a circadian metabolic signal in mammals, 10.1038/nature04368
  127. Zhang B.L., Ye Z., Xu R.L., You X.H., Qin Y.W., Wu H., Cao J., Zhang J.L., Zheng X., Zhao X.X., Overexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish : Effect of genic mutation on PRKAG2 cardiac syndrome, 10.1111/cge.12267
  128. Zhu Xiao-Jing, Dai Jie-Qiong, Tan Xin, Zhao Yang, Yang Wei-Jun, Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos, 10.1186/1471-213x-9-21