User menu

Coulomb Sturmians in spheroidal coordinates and their application for diatomic molecular calculations

Bibliographic reference Kereselidze, Tamaz ; Chkadua, George ; Defrance, Pierre. Coulomb Sturmians in spheroidal coordinates and their application for diatomic molecular calculations. In: Molecular Physics : an international journal at the interface between chemistry and physics, Vol. 113, no.22, p. 3471-3479 (2015)
Permanent URL
  1. Shull Harrison, Löwdin Per‐Olov, Superposition of Configurations and Natural Spin Orbitals. Applications to the He Problem, 10.1063/1.1730019
  2. Avery J., Generalized Sturmians and Atomic Spectra
  3. Shibuya T.-I., Wulfman C. E., Molecular Orbitals in Momentum Space, 10.1098/rspa.1965.0151
  4. Aquilanti V., New Methods in Quantum Theory (1996)
  5. Aquilanti Vincenzo, Cavalli Simonetta, Coletti Cecilia, Grossi Gaia, Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion, 10.1016/0301-0104(96)00162-0
  6. Aquilanti Vincenzo, Cavalli Simonetta, Coletti Cecilia, The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets, 10.1016/s0301-0104(96)00310-2
  7. Aquilanti Vincenzo, Caligiana Andrea, Sturmian approach to one-electron many-center systems: integrals and iteration schemes, 10.1016/s0009-2614(02)01532-4
  8. Koga Toshikatsu, Matsuhashi Toshiyuki, Sum rules for nuclear attraction integrals over hydrogenic orbitals, 10.1063/1.452833
  9. Koga Toshikatsu, Matsuhashi Toshiyuki, One‐electron diatomics in momentum space. V. Nonvariational LCAO approach, 10.1063/1.455168
  10. Avery John, Avery James, Can Coulomb Sturmians Be Used as a Basis forN-Electron Molecular Calculations?, 10.1021/jp9040502
  11. Avery John Scales, Avery James Emil, Coulomb Sturmians as a basis for molecular calculations, 10.1080/00268976.2012.658876
  12. Coulson C A, Robinson P D, Wave Functions for the Hydrogen Atom in Spheroidal Coordinates I: The Derivation and Properties of the Functions, 10.1088/0370-1328/71/5/312
  13. Komarov I.V., Spheroidal and Coulomb Spheroidal Functions (1976)
  14. Kereselidze T M, Noselidze I L, Chibisov M I, Analytical expressions for two-Coulomb-centre wavefunctions at large internuclear distances, 10.1088/0953-4075/36/5/306
  15. Kereselidze T M, Machavariani Z S, Noselidze I L, Asymptotically exact Coulomb spheroidal wavefunctions, 10.1088/0953-4075/31/1/006
  16. Kereselidze T M, Machavariani Z S, Noselidze I L, The one-Coulomb-centre problem in the spheroidal coordinate system: asymptotic solutions, 10.1088/0953-4075/29/2/014
  17. Defrance P, Kereselidze T, Lecointre J, Machavariani Z S, Application of the Coulomb spheroidal basis for diatomic molecular calculations, 10.1088/1742-6596/388/15/152024
  18. Kereselidze T., Machavariani Z. S., Chkadua G., Explicit spheroidal wave functions of the hydrogen atom, 10.1140/epjd/e2011-10690-6
  19. Gerstein S.S., Sov. Phys. JETF, 13, 1044 (1961)
  20. Kereselidze T.M., J. Phys., 20, 1891 (1987)
  21. Bates D.R., Advances in Atomic and Molecular Physics, 4
  22. Peek James M., Eigenparameters for the 1sσg and 2pσu Orbitals of H2+, 10.1063/1.1697265
  23. Peek James M., Proton—Hydrogen-Atom System at Large Distances. Resonant Charge Transfer and the1sσg−2pσuEigenenergies ofH2+, 10.1103/physrev.143.33
  24. Madsen M.M., At. Data, 2, 171 (1971)
  25. Ponomarev L.I., Zh. Eksp. Teor. Fiz., 52, 1273 (1967)
  26. Power J. D., Fixed Nuclei Two-Centre Problem in Quantum Mechanics, 10.1098/rsta.1973.0079
  27. Aubert M., Bessis N., Bessis G., Prolate-spheroidal orbitals for homonuclear and heteronuclear diatomic molecules. I. Basic procedure, 10.1103/physreva.10.51
  28. Turbiner A V, Olivares-Pilón H, The H+2molecular ion: a solution, 10.1088/0953-4075/44/10/101002
  29. Ishikawa Atsushi, Nakashima Hiroyuki, Nakatsuji Hiroshi, Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method, 10.1063/1.2842068
  30. Korobov V. I., Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies, 10.1103/physreva.61.064503
  31. Conroy H., J. Chem. Phys., 47, 926 (1967)
  32. Vukajlovic F R, Mogilevsky O A, Electron repulsion potentials of diatomic molecules in the adiabatic basis, 10.1088/0022-3700/13/11/008
  33. Morse P.M., Methods of Theoretical Physics (1953)